# Impacts of Channel Network Type on the Unit Hydrograph

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{8}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Hillslope Travel Time Distribution

#### 2.2. Channel Travel Time Distribution

#### 2.3. Total Travel Time Distribution

#### 2.4. Application

^{2}. The parallel and rectangular basins are the smallest with average areas of 217 km

^{2}and 254 km

^{2}, respectively. The DEM resolution depends on the DEM source. It is coarsest (on average 76.4 m) for pinnate basins in Ukraine and Moldova, for which the Shuttle Radar Topography Mission (SRTM) provided data at a resolution of 3 arc seconds. The other network types have an average resolution of 27 m. The channel threshold area (which also determines ${A}_{h\mathrm{max}}$) is largest for pinnate basins (on average 688,560 m

^{2}) and smallest for dendritic and parallel basins (on average 53,720 m

^{2}and 76,850 m

^{2}, respectively).

## 3. Results

#### 3.1. Distributions of A_{sh} and A_{sc}

#### 3.2. IUHs

#### 3.3. Hydrographs

## 4. Discussion and Conclusions

## Supplementary Materials

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Feldman, A.D. Hydrologic Modeling System HEC-HMS; U.S. Army Corps of Engineers Technical Reference Manual: Davis, CA, USA, 2000.
- Arnold, J.G.; Fohrer, N. SWAT2000: Current capabilities and research opportunities in applied watershed modelling. Hydrol. Process.
**2005**, 19, 563–572. [Google Scholar] [CrossRef] - Sherman, L.K. Streamflow from rainfall by the unit hydrograph method. Engl. News Record.
**1932**, 108, 501–505. [Google Scholar] - Cudennec, C.; Fouad, Y.; Sumarjo Gatot, I.; Duchesne, J. A geomorphological explanation of the unit hydrograph concept. Hydrol. Process.
**2004**, 18, 603–621. [Google Scholar] [CrossRef] - Rodríguez-Iturbe, I.; Valdes, J.B. The geomorphologic structure of hydrologic response. Water Resour. Res.
**1979**, 15, 1409–1420. [Google Scholar] [CrossRef] [Green Version] - Rinaldo, A.; Vogel, G.K.; Rigon, R.; Rodriguez-Iturbe, I. Can one gauge the shape of a basin? Water Resour. Res.
**1995**, 31, 1119–1127. [Google Scholar] [CrossRef] - Robinson, J.S.; Sivapalan, M.; Snell, J.D. On the relative roles of hillslope processes, channel routing and network geomorphology in the hydrologic response of natural catchments. Water Resour. Res.
**1995**, 31, 3089–3101. [Google Scholar] [CrossRef] - Singh, P.K.; Mishra, S.K.; Jain, M.K. A review of the synthetic unit hydrograph: From the empirical UH to advanced geomorphological methods. Hydrol. Sci. J.
**2014**, 59, 239–261. [Google Scholar] [CrossRef] - SCS. Section 4 Hydrology. In National Engineering Handbook; Soil Conservation Service: Washington DC, USA, 1972. [Google Scholar]
- NRCS. Hydrographs. In National Engineering Handbook; U.S. Department of Agriculture: Washington, DC, USA, 2007; 16p. [Google Scholar]
- Clark, C.O. Storage and the Unit Hydrograph. Proc. Am. Soc. Civ. Eng.
**1945**, 69, 1333–1360. [Google Scholar] - Kull, D.W.; Feldman, A.D. Evolution of Clark’s unit graph method to spatially distributed runoff. J. Hydrol. Eng.
**1998**, 3, 9–19. [Google Scholar] [CrossRef] - Peters, J.C.; Easton, D.J. Runoff simulation using radar rainfall data. J. Am. Water Resour. Assoc.
**1996**, 32, 753–760. [Google Scholar] [CrossRef] - Saghafian, B.; Julien, P.Y.; Rajaie, H. Runoff hydrograph simulation based on time variable isochrone technique. J. Hydrol.
**2002**, 261, 193–203. [Google Scholar] [CrossRef] - Nash, J.E. The form of the instantaneous unit hydrograph. In Comptes Rendus et Rapports; IASH–IUGG: Toronto, ON, Canada, 1957; pp. 114–118. [Google Scholar]
- Snyder, F.F. Synthetic unit-graphs. Trans. Am. Geophys. Union
**1938**, 19, 447–454. [Google Scholar] [CrossRef] - Bhunya, P.K.; Berndtsson, R.; Ojha, C.S.P.; Mishra, S.K. Suitability of Gamma, Chi-square, Weibull, and Beta distributions as synthetic unit hydrographs. J. Hydrol.
**2007**, 334, 28–38. [Google Scholar] [CrossRef] - Gray, D.M. Synthetic unit hydrographs for small drainage areas. J. Hydraul. Div.
**1961**, 87, 33–54. [Google Scholar] - Bhunya, P.K.; Mishra, S.K.; Berndtsson, R. Simplified two-parameter gamma distribution for derivation of synthetic unit hydrograph. J. Hydrol. Eng.
**2003**, 8, 226–230. [Google Scholar] [CrossRef] - Croley, T.E., II. Gamma synthetic hydrographs. J. Hydrol.
**1980**, 47, 41–52. [Google Scholar] [CrossRef] - Bhunya, P.K.; Singh, P.K.; Mishra, S.K. Fréchet and chi-square parametric expressions combined with Horton ratios to derive a synthetic unit hydrograph. Hydrol. Sci. J.
**2009**, 54, 274–286. [Google Scholar] [CrossRef] - Bhunya, P.K.; Mishra, S.K.; Ojha, C.S.P.; Berndtsson, R. Parameter estimation of beta distribution for unit hydrograph derivation. J. Hydrol. Eng.
**2004**, 9, 325–332. [Google Scholar] [CrossRef] - Koutsoyiannis, D.; Xanthopoulos, T. On the parametric approach to unit hydrograph identification. Water Resour. Manag.
**1989**, 3, 107–128. [Google Scholar] [CrossRef] - Gupta, V.K.; Waymire, E.; Wang, C.T. A representation of an instantaneous unit hydrograph from geomorphology. Water Resour. Res.
**1980**, 16, 855–862. [Google Scholar] [CrossRef] - Gupta, V.K.; Waymire, E. On the formulation of an analytical approach to hydrologic response and similarity at the basin scale. J. Hydrol.
**1983**, 65, 95–123. [Google Scholar] [CrossRef] - Strahler, A.N. Quantitative analysis of watershed geomorphology. Eos. Trans. Am. Geophys. Union
**1957**, 38, 913–920. [Google Scholar] [CrossRef] [Green Version] - Van der Tak, L.D.; Bras, R.L. Incorporating hillslope effects into the geomorphologic instantaneous unit hydrograph. Water Resour. Res.
**1990**, 26, 2393–2400. [Google Scholar] [CrossRef] - Rodríguez-Iturbe, I.; González-Sanabria, M.; Bras, R.L. A geomorphoclimatic theory of the instantaneous unit hydrograph. Water Resour. Res.
**1982**, 18, 877–886. [Google Scholar] [CrossRef] - Rigon, R.; Bancheri, M.; Formetta, G.; de Lavenne, A. The geomorphological unit hydrograph from a historical-critical perspective. Earth Surf. Proc. Land.
**2016**, 41, 27–37. [Google Scholar] [CrossRef] - Kirkby, M. Tests of the random network model, and its application to basin hydrology. Earth Surf. Process.
**1976**, 1, 197–212. [Google Scholar] [CrossRef] - Botter, G.; Rinaldo, A. Scale effect on geomorphologic and kinematic dispersion. Water Resour. Res.
**2003**, 39, 1286. [Google Scholar] [CrossRef] - D’Odorico, P.; Rigon, R. Hillslope and channel contributions to the hydrologic response. Water Resour. Res.
**2003**, 39, 1–9. [Google Scholar] [CrossRef] - Nicótina, L.; Alessi Celegon, E.; Rinaldo, A.; Marani, M. On the impact of rainfall patterns on the hydrologic response. Water Resour. Res.
**2008**, 44, 1–14. [Google Scholar] [CrossRef] [Green Version] - Biswal, B.; Singh, R. Incorporating channel network information in hydrologic response modelling: Development of a model and inter-model comparison. Adv. Water Resour.
**2017**, 100, 168–182. [Google Scholar] [CrossRef] [Green Version] - Lee, K.T.; Chen, N.-C.; Chung, Y.-R. Derivation of variable IUH corresponding to time-varying rainfall intensity during storms. Hydrol. Sci. J.
**2008**, 53, 323–337. [Google Scholar] [CrossRef] - Maidment, D.R. GIS and hydrological modeling, Environmental Modeling within GIS; Oxford: University Press: New York, NY, USA, 1993. [Google Scholar]
- Bunster, T.; Gironás, J.; Niemann, J.D. On the influence of upstream flow contributions in spatially distributed travel time models for hydrograph prediction. Water Resour. Res.
**2019**, 55, 1–21. [Google Scholar] [CrossRef] - Du, J.; Xie, H.; Hu, Y.; Xu, Y.; Xu, C.Y. Development and testing of a new storm runoff routing approach based on time variant spatially distributed travel time method. J. Hydrol.
**2009**, 369, 44–54. [Google Scholar] [CrossRef] - Foda, R.F.; Awadallah, A.G.; Gad, M.A. A Fast semi distributed rainfall runoff model for engineering applications in arid and semi-arid regions. Water Resour. Manag.
**2017**, 31, 4941–4955. [Google Scholar] [CrossRef] - Gironás, J.; Niemann, J.D.; Roesner, L.A.; Rodriguez, F.; Andrieu, H. A morpho-climatic instantaneous unit hydrograph model for urban catchments based on the kinematic wave approximation. J. Hydrol.
**2009**, 377, 317–334. [Google Scholar] [CrossRef] - Lee, K.T.; Yen, B.C. Geomorphology and kinematic-wave-based hydrograph derivation. J. Hydraul. Eng.
**1997**, 123, 73–80. [Google Scholar] [CrossRef] - Muzik, I. Flood modelling with GIS-derived distributed unit hydrographs. Hydrol. Process.
**1996**, 10, 1401–1409. [Google Scholar] [CrossRef] - Zernitz, E.R. Drainage Patterns and Their Significance. J. Geol.
**1932**, 40, 498–521. [Google Scholar] [CrossRef] - Castelltort, S.; Simpson, G.; Darrioulat, A. Slope-control on the aspect ratio of river basins. Terra Nov.
**2009**, 21, 265–270. [Google Scholar] [CrossRef] - Howard, A.D. Drainage analysis in geologic interpretation: A summation. Am. Assoc. Pet. Geol. Bull.
**1967**, 51, 2246–2259. [Google Scholar] [CrossRef] - Jung, K.; Niemann, J.D.; Huang, X. Under what conditions do parallel river networks occur? Geomorphology
**2011**, 132, 260–271. [Google Scholar] [CrossRef] - Phillips, L.F.; Schumm, S.A. Effect of regional slope on drainage networks. Geology
**1987**, 15, 813–816. [Google Scholar] [CrossRef] - Parvis, M. Drainage pattern significance in airphoto identification of soils and bedrocks. Photogramm. Eng.
**1950**, 16, 375–409. [Google Scholar] - Pereira-Claren, A.; Gironás, J.; Niemann, J.D.; Passalacqua, P.; Mejia, A.; Escauriaza, C. Planform geometry and relief characterization of drainage networks in high-relief environments: An analysis of Chilean Andean basins. Geomorphology
**2019**, 341, 46–64. [Google Scholar] [CrossRef] - Argialas, D.; Lyon, J.; Mintzer, O. Quantitative description and classification of drainage patterns. Photogramm. Eng. Remote Sens.
**1988**, 54, 505–509. [Google Scholar] - Hadipriono, F.C.; Lyon, J.G.; Li, T. The development of a knowledge based expert system for analysis of drainage patterns. Photogramm. Eng. Remote Sens.
**1990**, 56, 905–909. [Google Scholar] - Ichoku, C.; Chorowicz, J. A numerical approach to the analysis and classification of channel network patterns types. Water Resour. Res.
**1994**, 30, 161–174. [Google Scholar] [CrossRef] - Mejía, A.I.; Niemann, J.D. Identification and characterization of dendritic, parallel, pinnate, rectangular, and trellis networks based on deviations from planform self-similarity. J. Geophys. Res.
**2008**, 113, 1–21. [Google Scholar] [CrossRef] [Green Version] - Jung, K.; Marpu, P.R.; Ouarda, T.B.M.J. Impact of river network type on the time of concentration. Arab. J. Geosci.
**2017**, 10, 1–17. [Google Scholar] [CrossRef] - Wong, T.S.W. Time of concentration formulae for planes with upstream inflow. Hydrol. Sci. J.
**1995**, 40, 663–666. [Google Scholar] [CrossRef] - Zuazo, V.; Gironás, J.; Niemann, J.D. Assessing the impact of travel time formulations on the performance of spatially distributed travel time methods applied to hillslopes. J. Hydrol.
**2014**, 519, 1315–1327. [Google Scholar] [CrossRef] - Dunne, T.; Black, R.D. Partial area contributions to storm runoff in a small New England watershed. Water Resour. Res.
**1970**, 6, 1296–1311. [Google Scholar] [CrossRef] [Green Version] - Melesse, A.M.; Graham, W.D. Storm runoff prediction based on a spatially distributed travel time method utilizing remote sensing and GIS. J. Am. Water Resour. Assoc.
**2004**, 40, 863–879. [Google Scholar] [CrossRef] - Robinson, J.J.S.; Sivapalan, M. Instantaneous response functions of overland flow and subsurface stormflow for catchment models. Hydrol. Process.
**1996**, 10, 845–862. [Google Scholar] [CrossRef] - Gilbert, G.K. The convexity of hilltops. J. Geol.
**1909**, 17, 344–350. [Google Scholar] [CrossRef] [Green Version] - Roering, J.J.; Kirchner, J.W.; Dietrich, W.E. Hillslope evolution by nonlinear, slope-dependent transport: Steady state morphology and equilibrium adjustment timescales. J. Geophys. Res.
**2001**, 106, 16499–16513. [Google Scholar] [CrossRef] - Tucker, G.E.; Bras, R.L. Hillslope processes, drainage density, and landscape morphology. Water Resour. Res.
**1998**, 34, 2751–2764. [Google Scholar] [CrossRef] [Green Version] - George, F.; Ramachandran, K.M. Estimation of parameters of Johnson’s system of distributions. J. Mod. Appl. Stat. Methods
**2011**, 10, 494–504. [Google Scholar] [CrossRef] [Green Version] - Kottegoda, N.T. Fitting Johnson SB curve by the method of maximum likelihood to annual maximum daily rainfalls. Water Resour. Res.
**1987**, 23, 728–732. [Google Scholar] [CrossRef] - Wong, T.S.W. Formulas for time of travel in channel with upstream inflow. J. Hydrol. Eng.
**2001**, 6, 416–422. [Google Scholar] [CrossRef] - Iacobellis, V.; Fiorentino, M. Derived distribution of floods based on the concept of partial area coverage with a climatic appeal. Water Resour. Res.
**2000**, 36, 469–482. [Google Scholar] [CrossRef] - Flint, J.J. Stream gradient as a function of order, magnitude, and discharge. Water Resour. Res.
**1974**, 10, 969–973. [Google Scholar] [CrossRef] - Hack, J.T. Studies of Longitudinal Stream Profiles in Virginia and Maryland; Geological Survey Professional Paper 294-B; United States Government Printing Office: Washington, DC, USA, 1957.
- Sklar, L.; Dietrich, W.E. River Longitudinal profiles and bedrock incision models: Stream power and the influence of sediment supply. In Rivers Over Rock: Fluvial Processes in Bedrock Channels; American Geophysical Union: Washington, DC, USA, 2013. [Google Scholar] [CrossRef]
- Tarboton, D.G.; Bras, R.L.; Rodriguez-Iturbe, I. Scaling and elevation in river networks. Water Resour. Res.
**1989**, 25, 2037–2051. [Google Scholar] [CrossRef] - Willgoose, G.; Bras, R.L.; Rodriguez-Iturbe, I. A physical explanation of an observed link area-slope relationship. Water Resour. Res.
**1991**, 27, 1697–1702. [Google Scholar] [CrossRef] - Cohen, S.; Willgoose, G.; Hancock, G. A methodology for calculating the spatial distribution of the area-slope equation and the hypsometric integral within a catchment. J. Geophys. Res. Earth Surf.
**2008**, 113, 1–13. [Google Scholar] [CrossRef] [Green Version] - Niemann, J.D.; Bras, R.L.; Veneziano, D.; Rinaldo, A. Impacts of surface elevation on the growth and scaling properties of simulated river networks. Geomorphology
**2001**, 40, 37–55. [Google Scholar] [CrossRef] - Ijjasz-Vasquez, E.J.; Bras, R.L. Scaling regimes of local slope versus contributing area in digital elevation models. Geomorphology
**1995**, 12, 299–311. [Google Scholar] [CrossRef] - Leopold, L.B.; Maddock, T.J. The Hydraulic Geometry of Stream Channels and Some Physiographic Implications, Geological Survey Professional Paper 252; United States Geological Service: Washington, DC, USA, 1953. [CrossRef]
- Montgomery, D.R.; Gran, K.B. Downstream variations in the width of bedrock channels. Water Resour. Res.
**2001**, 37, 1841–1846. [Google Scholar] [CrossRef] - Wolman, M.G. The Natural Channel of Brandywine Creek Pennsylvania, Geological Survey Professional Paper 271; United States Government Printing Office: Washington, DC, USA, 1955; 56p.
- Tucker, G.E.; Catani, F.; Rinaldo, A.; Bras, R.L. Statistical analysis of drainage density from digital terrain data. Geomorphology
**2001**, 36, 187–202. [Google Scholar] [CrossRef] - O’Callaghan, J.F.; Mark, D.M. The extraction of drainage networks from digital elevation data. Comput. Vision Graph. Image Process.
**1984**, 28, 323–344. [Google Scholar] [CrossRef] - Tarboton, D.G. Terrain Analysis Using Digital Elevation Models (TauDEM, ver. 5.3.5). In Proceedings of the 23rd ESRI International Users Conference, San Diego, CA, USA, 7–11 July 2003. [Google Scholar]
- Tarboton, D.G.; Bras, R.L.; Rodriguez-Iturbe, I. On the extraction of channel networks from digital elevation data. Hydrol. Process.
**1991**, 5, 81–100. [Google Scholar] [CrossRef] - Montgomery, D.R. Slope distributions, threshold hillslopes, and steady-state topography. Am. J. Sci.
**2001**, 301, 432–454. [Google Scholar] [CrossRef] [Green Version] - D’Agostino, R.B.; Stephens, M.A. (Eds.) Goodness-of-Fit Techniques; Marcel Dekker, Inc.: New York, NY, USA, 1986. [Google Scholar] [CrossRef]
- Weber, M.D.; Leemis, L.M.; Kincaid, R.K. Minimum Kolmogorov-Smirnov test statistic parameter estimates. J. Stat. Comput. Simul.
**2006**, 76, 195–206. [Google Scholar] [CrossRef] [Green Version] - Jogesh Babu, G.; Rao, C.R. Goodness-of-fit tests when parameters are estimated. Indian J. Stat.
**2004**, 66, 63–74. [Google Scholar] - Anderson, D.R.; Burnham, K.P.; Thompson, W.L. Null hypothesis testing: Problems, prevalence, and an alternative. J. Wildl. Manag.
**2000**, 64, 912–923. [Google Scholar] [CrossRef] - Cohen, Y.; Cohen, J.Y. Analysis of Variance. In Statistics and Data with R; John Wiley & Sons, Ltd.: Chichester, UK, 2008; pp. 463–509. [Google Scholar] [CrossRef]
- Maxwell, S.; Delaney, H. Designing Experiments and Analyzing Data: A Model Comparison Perspective, Briefings in Functional Genomics Proteomics; Taylor & Fancis Group, LLC.: New York, NY, USA, 2004. [Google Scholar] [CrossRef]
- McCuen, R.H.; Johnson, P.A.; Ragan, R.M. Highway Hydrology: Hydraulic Design Series No. 2; Federal Highway Administration: Arlington, VA, USA, 2002.
- Chow, V.T. Open-Channel Hydraulics; McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation uidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE
**2007**, 50, 885–900. [Google Scholar] [CrossRef] - Singh, J.; Knapp, H.V.; Arnold, J.G.; Demissie, M. Hydrological modeling of the Iroquois River watershed using HSPF and SWAT. J. Am. Water Resour. Assoc.
**2005**, 41, 343–360. [Google Scholar] [CrossRef] - Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol.
**1970**, 10, 282–290. [Google Scholar] [CrossRef] - Czyzyk, K.A. A Nonlinear Synthetic Unit Hydrograph Method that Accounts for Channel Network Type. Master’s Thesis, Colorado State University, Fort Collins, CO, USA, 2018. [Google Scholar]
- Mirossi, D. Is Channel Network Classification Beneficial for More Accurately Estimating the Instantaneous Unit Hydrograph? Master’s Thesis, University of Trento, Trento, Italy, 2019. [Google Scholar]

**Figure 1.**An example channel network from the (

**a**) dendritic, (

**b**) pinnate, (

**c**) trellis, (

**d**) parallel, and (

**e**) rectangular types. Black dots indicate the basin outlets.

**Figure 2.**Kolmogorov‒Smirnov (K‒S) statistics for the four best fitting distributions for (

**a**) ${A}_{sh}$ and (

**b**) ${A}_{sc}$. DEN denotes dendritic, PAR denotes parallel, PIN denotes pinnate, REC denotes rectangular, and TRE denotes trellis.

**Figure 3.**Histograms and fitted Johnson SB distributions for ${A}_{sh}$ (

**a–e**) and ${A}_{sc}$ (

**f**–

**j**) for an example basin of each type. The basins are the same as those in Figure 1.

**Figure 4.**Parameters (

**a**) ${\delta}_{h}$, (

**b**) ${\gamma}_{h}$, (

**c**) ${\xi}_{h}$, and (

**d**) ${\lambda}_{h}$ of the Johnson SB distribution for ${A}_{sh}$ plotted against the maximum hillslope area ${A}_{h\mathrm{max}}$. The symbols show the calibrated parameter values for each basin. The horizontal lines in (

**a**–

**c**) show the average parameter value for each network type. The lines in (

**d**) show power functions fitted to the ${\lambda}_{h}$ values for each network type.

**Figure 5.**Parameters (

**a**) ${\delta}_{c}$, (

**b**) ${\gamma}_{c}$, (

**c**) ${\xi}_{c}$, and (

**d**) ${\lambda}_{c}$ of the Johnson SB distribution for ${A}_{sc}$ plotted against the maximum upstream area ${A}_{\mathrm{max}}$. The symbols show the calibrated parameter values for each basin. The horizontal lines in (

**b**–

**c**) show the average parameter value for each network type. The lines in (

**d**) show power functions fitted to the ${\lambda}_{c}$ values for each network type.

**Figure 6.**Kolmogorov‒Smirnov (K‒S) statistics for the Johnson SB distribution for (

**a**) ${A}_{sh}$ and (

**b**) ${A}_{sc}$ when the distribution parameters are estimated separately for each network (Method 1), based on network type (Method 2), and neglecting network type (Method 3).

**Figure 7.**Instantaneous unit hydrographs (IUHs) estimated by the four methods described in the legend for an example basin of the (

**a**) dendritic, (

**b**) parallel, (

**c**) pinnate, (

**d**) rectangular, and (

**e**) trellis types. The basins are the same as those in Figure 1.

**Figure 8.**Performance metrics when the instantaneous unit hydrographs are estimated by either including or neglecting the network type as indicated in the legend. Column heights indicate the average performance and black bars indicate the range of performance for each case.

**Figure 9.**(

**a**) Rainfall intensity for a 6-h SCS Type II storm and the resulting specific discharge hydrographs for an example basin of the (

**b**) dendritic, (

**c**) pinnate, (

**d**) trellis, (

**e**) parallel, and (

**f**) rectangular types when the IUH is determined using the four methods described in the legend. The basins are the same as those in Figure 1.

**Table 1.**Basin areas and channel threshold areas for the 50 analyzed basins. The thresholds are identified between the colluvial and bedrock channel segments in the slope‒area plots.

Basin Name | Basin Area (km^{2}) | Channel Threshold Area (m^{2}) | Basin Name | Basin Area (km^{2}) | Channel Threshold Area (m^{2}) | |
---|---|---|---|---|---|---|

Dendritic | Bluestone, WV | 324 | 33,300 | Rockcastle, KY | 314 | 53,400 |

Buffalo, WV | 419 | 56,000 | Tenmile, PA | 512 | 95,500 | |

Captina, OH | 460 | 29,200 | Turkey, SC | 625 | 63,000 | |

Cedar, GA | 219 | 115,500 | Tygarts, KY | 291 | 79,100 | |

Little Saluda, SC | 565 | 102,900 | Wheeling, WV | 739 | 36,500 | |

Parallel | Albert, WY | 439 | 57,400 | Piceance 1, CO | 156 | 70,600 |

Black Sulphur, CO | 266 | 73,300 | Piceance 2, CO | 74 | 47,600 | |

Duck, CO | 142 | 80,300 | Sheep, WY | 487 | 215,100 | |

Greasewood, CO | 61 | 65,200 | Willow, UT | 350 | 55,400 | |

Mancos River, CO | 113 | 133,100 | Yellow, CO | 85 | 110,000 | |

Pinnate | Dniester 1, UKR | 2114 | 1,037,900 | Dniester 6, UKR | 761 | 1,045,100 |

Dniester 2, UKR | 1356 | 488,500 | Nistru 1, MDA | 697 | 639,400 | |

Dniester 3, UKR | 1005 | 707,800 | Nistru 2, MDA | 589 | 758,400 | |

Dniester 4, UKR | 1573 | 540,300 | Nistru 4, MDA | 723 | 614,600 | |

Dniester 5, UKR | 967 | 706,700 | Nistru 5, MDA | 350 | 983,800 | |

Rectangular | Boquet, NY | 241 | 108,500 | Salmon, NY | 495 | 146,200 |

Boreas, NY | 218 | 250,500 | Schroon, NY | 239 | 172,300 | |

Cold, NY | 218 | 104,300 | Summer, NY | 147 | 88,900 | |

Hudson, NY | 198 | 239,700 | Walker, NY | 133 | 198,400 | |

Saint Regis, NY | 344 | 124,600 | W. St. Regis, NY | 304 | 116,100 | |

Trellis | Aughwick, PA | 823 | 141,700 | Juniata, PA | 539 | 62,700 |

Cacapon, WV | 865 | 125,100 | Middle, PA | 219 | 166,300 | |

Chestuee, TN | 339 | 54,300 | Penns, PA | 480 | 956,900 | |

Evitts, MD | 240 | 168,600 | Peters, WV | 609 | 59,600 | |

Jackson, VA | 251 | 116,300 | Sleepy, WV | 294 | 51,500 |

**Table 2.**Distribution parameters that exhibit significant differences between the network types based on the analysis of variance (ANOVA) and analysis of covariance (ANCOVA) tests. For each pairing of network types, the top row reports parameters for ${A}_{sh}$, and the bottom row reports parameters for ${A}_{sc}$.

Network Type | Parallel | Pinnate | Rectangular | Trellis |
---|---|---|---|---|

Dendritic | ${\gamma}_{h}$ | ${\delta}_{h}$, ${\xi}_{h}$, ${\lambda}_{h\mathrm{coef}}$, ${\lambda}_{h\mathrm{exp}}$ | ${\delta}_{h}$, ${\gamma}_{h}$, ${\xi}_{h}$ | ${\delta}_{h}$, ${\gamma}_{h}$, ${\xi}_{h}$ |

${\xi}_{c}$ | ${\gamma}_{c}$, ${\xi}_{c}$, ${\lambda}_{c\mathrm{coef}}$ | ${\gamma}_{c}$, ${\xi}_{c}$, ${\lambda}_{c\mathrm{coef}}$ | ${\gamma}_{c}$, ${\xi}_{c}$ | |

Parallel | ${\xi}_{h}$ | ${\delta}_{h}$, ${\gamma}_{h}$, ${\xi}_{h}$ | ${\delta}_{h}$, ${\gamma}_{h}$, ${\xi}_{h}$, ${\lambda}_{h\mathrm{coef}}$, ${\lambda}_{h\mathrm{exp}}$ | |

${\gamma}_{c}$ | ${\gamma}_{c}$ | - | ||

Pinnate | ${\delta}_{h}$, ${\gamma}_{h}$ | ${\delta}_{h}$, ${\gamma}_{h}$, ${\xi}_{h}$, ${\lambda}_{h\mathrm{coef}}$, ${\lambda}_{h\mathrm{exp}}$ | ||

${\gamma}_{c}$ | ${\gamma}_{c}$ | |||

Rectangular | ${\xi}_{h}$, ${\lambda}_{h\mathrm{coef}}$, ${\lambda}_{h\mathrm{exp}}$ | |||

- |

**Table 3.**Estimated parameters of the Johnson SB distribution for ${A}_{sh}$ (

**left**) and ${A}_{sc}$ (

**right**).

Type | ${\mathit{\delta}}_{\mathit{h}}$ | ${\mathit{\gamma}}_{\mathit{h}}$ | ${\mathit{\xi}}_{\mathit{h}}$ | ${\mathit{\lambda}}_{\mathit{h}\mathbf{coef}}$ | ${\mathit{\lambda}}_{\mathit{h}\mathbf{exp}}$ | ${\mathit{\delta}}_{\mathit{c}}$ | ${\mathit{\gamma}}_{\mathit{c}}$ | ${\mathit{\xi}}_{\mathit{c}}$ | ${\mathit{\lambda}}_{\mathit{c}\mathbf{coef}}$ | ${\mathit{\lambda}}_{\mathit{c}\mathbf{exp}}$ |
---|---|---|---|---|---|---|---|---|---|---|

Dendritic | 0.991 | 0.654 | −1.8 | 16 | 0.204 | - | −0.533 | −1339 | 398 | 0.579 |

Parallel | 1.036 | 0.881 | −3.9 | 76 | 0.081 | - | −0.288 | −556 | 1256 | 0.381 |

Pinnate | 1.069 | 0.711 | −13.7 | 15 | 0.255 | - | 0.352 | −479 | 4579 | 0.244 |

Rectangular | 1.300 | 1.300 | −14.0 | 258 | 0.006 | - | −0.011 | −341 | 5687 | 0.088 |

Trellis | 1.296 | 1.567 | −11.2 | 14 | 0.256 | - | −0.081 | −533 | 1203 | 0.414 |

All | 1.138 | 1.023 | −8.9 | 3 | 0.373 | 0.982 | −0.112 | −649 | 668 | 0.504 |

**Table 4.**Model parameters used in the development of the instantaneous unit hydrographs. Parameters that vary are determined from the digital elevation model for each basin.

Parameter | Value | Units |
---|---|---|

Channel roughness (${n}_{c}$) | 0.05 | s/m^{1/3} |

Hillslope roughness (${n}_{h}$) | 0.15 | s/m^{1/3} |

Grid cell area ($A$) | Varies | m^{2} |

Slope of hillslopes (${S}_{h}$) | Varies | m/m |

Slope‒area factor ($b$) | Varies | m^{−2θ} |

Slope‒area exponent ($\theta $) | Varies | - |

Channel width factor ($d$) | 0.02 | m^{1−2e} |

Channel width exponent ($e$) | 0.5 | - |

Fraction of area contributing ($r$) | 0.3 | m^{2}/m^{2} |

Runoff rate (${E}_{i}$) | 25.4 | mm/h |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Czyzyk, K.; Mirossi, D.; Abdoulhak, A.; Hassani, S.; Niemann, J.D.; Gironás, J.
Impacts of Channel Network Type on the Unit Hydrograph. *Water* **2020**, *12*, 669.
https://doi.org/10.3390/w12030669

**AMA Style**

Czyzyk K, Mirossi D, Abdoulhak A, Hassani S, Niemann JD, Gironás J.
Impacts of Channel Network Type on the Unit Hydrograph. *Water*. 2020; 12(3):669.
https://doi.org/10.3390/w12030669

**Chicago/Turabian Style**

Czyzyk, Kelsey, Dario Mirossi, Almoatasem Abdoulhak, Sediqa Hassani, Jeffrey D. Niemann, and Jorge Gironás.
2020. "Impacts of Channel Network Type on the Unit Hydrograph" *Water* 12, no. 3: 669.
https://doi.org/10.3390/w12030669