Solar Fecal Coliform Disinfection in a Wastewater Treatment Plant by Oxidation Processes: Kinetic Analysis as a Function of Solar Radiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Reactor and Experiment Description
2.3. Experimental Design and Statistical Analysis
2.4. Kinetic Analysis
2.4.1. Linear Model
2.4.2. Linear + Shoulder and Linear + Tail Models
2.4.3. Weibull Model
2.4.4. Biphasic Model
2.5. UV Radiation Dose Analysis
3. Results and Discussion
3.1. Statistical Analysis of Disinfection Processes
3.2. Kinetic Analysis
3.3. Radiation Doses in Inactivation Processes
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fair, G.; Geyer, J.; Okun, D. Purificación de aguas y tratamiento y remoción de aguas residuales; Editorial Limusa: Mexico, Mexico, 1999. [Google Scholar]
- Atlas, R. Bartha, R. Ecología microbiana y microbiología ambiental, 4th ed.; Pearson Education: Madrid, Spain, 2002. [Google Scholar]
- Rodríguez, M.; Sérodes, J. Spatial and temporal evolution of trihalomethanes in three water distribution systems. Water Res. 2001, 35, 1572–1586. [Google Scholar] [CrossRef]
- Lee, W.; Westerhoff, P. Formation of organic chloramines during water disinfection—chlorination versus chloramination. Water Res. 2009, 43, 2233–2239. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, G.; Engel, B. Health risk assessment of trihalomethanes in water treatment plants in Jiangsu Province, China. Ecotox. Environ. Safe 2019, 170, 346–354. [Google Scholar] [CrossRef] [PubMed]
- EPA. Folleto Informativo de Tecnología de Aguas Residuales, Desinfección Con Cloro; United States Environmental Protection Agency: Washington, DC, USA, 1999.
- Kim, J.; Chung, Y.; Shin, D.; Kim, M.; Lee, Y.; Lim, Y.; Lee, D. Chlorination by-products in surface water treatment process. Desalination 2003, 151, 1–9. [Google Scholar] [CrossRef]
- Gopal, K.; Sushree, S.; Bersillon, G.; Shashi, P. Chlorination byproducts, their toxicodynamics and removal from drinking water. J. Hazard. Mater. 2007, 140, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Dalrymple, O.; Stefanakos, E.; Trotz, M.; Goswami, D. A review of the mechanisms and modeling of photocatalytic disinfection. Appl. Catal. B-Environ. 2010, 98, 27–38. [Google Scholar] [CrossRef]
- Doederer, K.; Gernjak, W.; Weinberg, H.S.; Farre, M.J. Factors affecting the formation of disinfection by-products during chlorination and chloramination of secondary effluent for the production of high quality recycled water. Water Res. 2014, 48, 218–228. [Google Scholar] [CrossRef]
- Hrudey, S. Chlorination disinfection by-products, public health risk tradeoffs and me. Water Res. 2009, 43, 2057–2092. [Google Scholar] [CrossRef]
- Gutiérrez-Alfaro, S.; Acevedo, A.; Figueredo, M.; Saladin, M.; Manzano, M.A. Accelerating the process of solar disinfection (SODIS) by using polymer bags. J. Chem. Technol. Biotechnol. 2016, 92, 298–304. [Google Scholar] [CrossRef]
- Figueredo-Fernández, M.; Gutiérrez-Alfaro, S.; Acevedo-Merino, A.; Manzano, M. Estimating lethal dose of solar radiation for enterococcus inactivation through radiation reaching the water layer. Application to Solar Water Disinfection (SODIS). Sol. Energy 2017, 158, 303–310. [Google Scholar] [CrossRef]
- Giannakis, S.; Polo López, M.I.; Spuhler, D.; Sánchez Pérez, J.A.; Fernández Ibáñez, P.; Pulgarin, C. Solar disinfection is an augmentable, in situ-generated photo-Fenton reaction—Part 1: A review of the mechanisms and the fundamental aspects of the process. Appl. Catal. B-Environ. 2016, 199, 199–223. [Google Scholar] [CrossRef]
- Bensasson, R.; Land, E.; Truscott, T. Excited States and Free Radicals in Biology and Medicine: Contributions from Flash Photolysis and Pulse Radiolysis; Oxford University Press: Tokyo, Japan, 1993. [Google Scholar]
- Matsumura, Y.; Ananthaswamy, H. Toxic effects of ultraviolet radiation on the skin. Toxicol. Appl. Pharm. 2004, 195, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Heck, D.E.; Gerecke, D.R.; Vetrano, A.M.; Laskin, J.D. Solar ultraviolet radiation as a trigger of cell signal transduction. Toxicol. Appl. Pharm. 2004, 195, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Keogh, M.B.; Castro-Alferez, M.; Polo-Lopez, M.I.; Fernandez Calderero, I.; Al-Eryani, Y.A.; Joseph-Titus, C.; Sawant, B.; Dhodapkar, R.; Mathur, C.; McGuigan, K.G.; et al. Capability of 19-L polycarbonate plastic water cooler containers for efficient solar water disinfection (SODIS): Field case studies in India, Bahrain and Spain. Sol. Energy 2015, 116, 1–11. [Google Scholar] [CrossRef]
- Núñez-Núñez, C.M.; Chairez-Hernández, I.; García-Roig, M.; García-Prieto, J.C.; Melgoza-Alemán, R.M.; Proal-Nájera, J.B. UV-C/H2O2 heterogeneous photocatalytic inactivation of coliforms in municipal wastewater in a TiO2/SiO2 fixed bed reactor: A kinetic and statistical approach. Reac. Kinet. Mech. Catal. 2018, 125, 1159–1177. [Google Scholar] [CrossRef]
- Chu, W.; Choy, W.K.; So, T.Y. The effect of solution pH and peroxide in the TiO2-induced photocatalysis of chlorinated aniline. J. Hazard. Mater. 2007, 141, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Bustos, Y.; Vaca, M.; López, R.; Bandala, E.; Torres, L.; Rojas-Valencia, N. Disinfection of Primary Municipal Wastewater Effluents Using Continuous UV and Ozone Treatment. J. Water Resour. Prot. 2014, 6, 16–21. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, M.; Kannan, A. Effect of dissolved oxygen concentration and light intensity on photocatalytic degradation of phenol. Korean J. Chem. Eng. 2008, 25, 1300–1308. [Google Scholar] [CrossRef]
- Pang, X; Chen, C.; Ji, H.; Che, Y.; Ma, W.; Zhao, J. Unraveling the photocatalytic mechanisms on TiO2 surfaces using the oxygen-18 isotopic label technique. Molecules 2014, 19, 16291–16311. [CrossRef] [Green Version]
- Egerton, T.A. UV-absorption—the primary process in photocatalysis and some practical consequences. Molecules 2014, 19, 18192–18214. [Google Scholar] [CrossRef] [Green Version]
- Geeraerd, A.; Valdramidis, V.; Van Impe, J. GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves. Int. J. Food Microbiol. 2005, 102, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Seidu, R.; Sjølander, I.; Abubakari, A.; Amoah, D.; Larbi, J.A.; Stenström, T.A. Modeling the die-off of E. coli and Ascaris in wastewater-irrigated vegetables: implications for microbial health risk reduction associated with irrigation cessation. Water Sci. Technol. 2013, 68, 1013–1021. [Google Scholar] [CrossRef] [PubMed]
- Berney, M.; Weilenmann, H.; Simonetti, A.; Egli, T. Efficacy of solar disinfection of Escherichia coli, Shigella flexneri, Salmonella Typhimurium and Vibrio cholerae. J. App. Microbiol. 2006, 101, 828–836. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Chueca, J.; Ormad, M.; Mosteo, R.; Canalis, S.; Ovelleiro, J. Escherichia Coli Inactivation in Fresh Water through Photocatalysis with TiO2-Effect of H2O2 on Disinfection Kinetics. CLEAN Soil Air Water 2016, 44, 515–524. [Google Scholar] [CrossRef]
- Pantoja, J. Estudio de la degradación de materia orgánica presente en aguas residuales municipales mediante el uso de dióxido de titanio (TiO2) como fotocatalizador. Ph.D. Thesis, CIIDIR Durango, Durango, Mexico, 2015. [Google Scholar]
- Rincón, A.; Pulgarin, C. Bactericidal Action of Illuminated TiO2 on Pure Escherichia Coli and Natural Bacterial Consortia: Post-Irradiation Events in the Dark and Assessment of the Effective Disinfection Time. Appl. Catal. B-Environ. 2004, 49, 99–112. [Google Scholar] [CrossRef]
- Yurdakal, S.; Loddo, V.; Bayarri, Ferrer, V.; Palmisano, G.; Augugliaro, V.; Giménez, J.; Palmisano, L. Optical Properties of TiO2 Suspensions: Influence of pH and Powder Concentration on Mean Particle Size. Ind. Eng. Chem. Res. 2007, 46, 7620–7626. [Google Scholar] [CrossRef]
- Stintzing, A. Solar photocatalytic treatment of textile wastewater at a pilot plant in Menzel Temime/Tunisia. Ph.D. Thesis, Technische Universität Clausthal, Clausthal, Germany, 2003. [Google Scholar]
- Gutiérrez-Alfaro, S.; Acevedo, A.; Rodríguez, J.; Carpio, E.; Manzano, M. Solar photocatalytic water disinfection of Escherichia coli, Enterococcus spp. and Clostridium Perfringens using different low-cost devices. J. Chem. Technol. Biotechnol. 2015, 91, 2026–2037. [Google Scholar] [CrossRef]
- APHA. 9221 E. In Fecal Coliform Procedure. En Standard Methods for the Examination of Water and Wastewater; Eaton, A.D., Clesceri, L.S., Greenberg, A.E., Eds.; American Public Health Association: Washington, DC, USA, 1995. [Google Scholar]
- Giannakis, S.; Darakas, E.; Escalas-Cañellas, A.; Pulgarin, C. Solar disinfection modeling and post-irradiation response of Escherichia coli in wastewater. Chem. Eng. J. 2015, 281, 588–598. [Google Scholar] [CrossRef]
- Gueymard, C. Interdisciplinary applications of a versatile spectral solar irradiance model: A review. Energy 2005, 30, 1551–1576. [Google Scholar] [CrossRef]
- Shettle, E.; Fenn, R. Models for the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on Their Optical Properties; AFGL-TR-79-0214; Air Force Geophysics Lab.: Hanscom, MA, USA, 1979. [Google Scholar]
- BAM 4: Enumeration of Escherichia coli and the Coliform Bacteria. Available online: https://www.fda.gov/food/laboratory-methods-food/bam-4-enumeration-escherichia-coli-and-coliform-bacteria (accessed on 28 December 2019).
- Gumy, D.; Morais, C.; Bowen, P.; Pulgarin, C.; Giraldo, S.; Hajdu, R.; Kiwi, J. Catalytic activity of commercial of TiO2 powders for the abatement of the bacteria (E. coli) under solar simulated light: influence of the isoelectric point. Appl. Catal. B-Environ. 2006, 63, 76–84. [Google Scholar] [CrossRef]
- Malato, S.; Fernández-Ibáñez, P.; Maldonado, M.I.; Blanco, J.; Gernjak, W. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catal. Today 2009, 147, 1–59. [Google Scholar] [CrossRef]
- Pantoja-Espinoza, J.; Proal Nájera, J.; García-Roig, M.; Cháirez-Hernández, I.; Osorio-Revilla, G. Eficiencias comparativas de inactivación de bacterias coliformes en efluentes municipales por fotólisis (UV) y por fotocatálisis (UV/TiO2/SiO2). Caso depuradora de aguas de Salamanca, España. Rev. Mex. Ing. Quim. 2015, 14, 119–135. [Google Scholar]
- Moreno-Ríos, A.L.; Ballesteros, L.M.; Castro-López, C.A. Influence of process variables on the kinetic parameters of a Langmuir-Hinshelwood expression for E.coli inactivation during the photocatalytic disinfection of water. Sep. Sci. Technol. 2019, 1–14. [Google Scholar] [CrossRef]
- Yasar, A.; Nasir, A.; Hummaira, L.; Aamir, A.A.K. Pathogen regrowth in UASB effluent disinfected by UV, O3, H2O2 and advanced oxidation processes. Ozone Sci. Eng. 2007, 29, 485–492. [Google Scholar] [CrossRef]
- Villar-Navarro, E.; Levchuk, I.; Rueda-Márquez, J.J.; Manzano, M. Combination of solar disinfection (SODIS) with H2O2 for enhanced disinfection of marine aquaculture effluents. Sol. Energy 2019, 177, 144–154. [Google Scholar] [CrossRef]
- Rodríguez-Chueca, J.; Ormad, M.; Mosteo, R.; Ovelleiro, J. Kinetic modeling of Escherichia coli and Enterococcus sp. inactivation in wastewater treatment by photo-Fenton and H2O2/UV–vis processes. Chem. Eng. Sci. 2015, 138, 730–740. [Google Scholar] [CrossRef]
- Friedmann, D.; Mendive, C.; Bahnemann, D. TiO2 for water treatment: parameters affecting the kinetics and mechanisms of photocatalysis. Appl. Catal. B-Environ. 2010, 99, 398–406. [Google Scholar] [CrossRef]
- Fisher, M.B.; Iriarte, M.; Nelson, K.L. Solar water disinfection (SODIS) of Escherichia coli, Enterococcus spp., and MS2 coliphage: Effects of additives and alternative container materials. Water Res. 2012, 46, 1745–1754. [Google Scholar] [CrossRef]
- Schwegmann, H.; Ruppert, J.; Frimmel, F.H. Influence of the pH-value on the photocatalytic disinfection of bacteria with TiO2 – Explanation by DLVO and XDLVO theory. Water Res. 2013, 47, 1503–1511. [Google Scholar] [CrossRef]
pH | H2O2 mMol/L | Model | RMSE | R2 |
---|---|---|---|---|
(a) Solar disinfection processes (UV-Vis and UV-Vis/H2O2) | ||||
5 | 0 | Linear Linear + shoulder Weibull | 0.249 0.0628 0.0678 | 0.71 0.9840 0.9813 |
7.5 | 0 | Linear Weibull | 0.0921 0.0994 | 0.9719 0.9720 |
9 | 0 | Linear Weibull | 0.2298 0.2311 | 0.7995 0.8261 |
5 | 1 | Linear Linear + tail Weibull Biphasic | 0.4271 0.3695 0.3213 0.3325 | 0.8791 0.9224 0.9413 0.9476 |
7.5 | 1 | Linear Weibull Biphasic | 0.3218 0.1780 0.2081 | 0.8871 0.9724 0.9717 |
9 | 1 | Linear Linear + shoulder Weibull | 0.2657 0.2452 0.2476 | 0.9071 0.9322 0.9309 |
(b) Photocatalysis (UV-Vis/TiO2 and UV-Vis/H2O2/TiO2) | ||||
5 | 0 | Linear Linear + shoulder Weibull | 0.1975 0.0796 0.0782 | 0.6924 0.9572 0.9586 |
7.5 | 0 | Linear Linear + shoulder Weibull | 0.3084 0.1566 0.1395 | 0.8627 0.9697 0.9759 |
9 | 0 | Linear Weibull Biphasic | 0.3909 0.2759 0.2654 | 0.7427 0.8901 0.9153 |
5 | 1 | Linear Weibull Biphasic | 0.8805 0.6273 0.6688 | 0.7264 0.8889 0.9053 |
7.5 | 1 | Linear Linear + tail | 0.8436 0.2307 | 0.4608 0.9731 |
9 | 1 | Linear Linear + tail | 1.1136 0.3721 | 0.2509 0.9373 |
pH | H2O2 | Model | δ (min) | k1 (min−1) | k2 (min−1) | Sl (min) |
---|---|---|---|---|---|---|
(a) UV-Vis and UV-Vis/H2O2 | ||||||
5 7.5 9 | 0 mMol | Linear + shoulder Linear Weibull | - | 0.1 0.04 - | - - - | 59.5 |
- | - | |||||
50.15 | - | |||||
5 | 1 mMol | Biphasic | - | 0.17 | 0.04 | - |
7.5 | Biphasic | - | 0.41 | 0.09 | - | |
9 | Linear + shoulder | - | 0.08 | - | 19.5 | |
(b) Photocatalysis (UV-Vis/TiO2 and UV-Vis/H2O2/TiO2) | ||||||
5 | 0 mMol | Linear + shoulder | 0.08 | - | 63.3 | |
7.5 | Linear + shoulder | 0.1 | - | 38.3 | ||
9 | Biphasic | 0.56 | 0.04 | - | ||
5 | 1 mMol | Biphasic | 0.59 | 0.09 | - | |
7.5 | Linear + tail | 1.09 | - | - | ||
9 | Linear + tail | 1.6 | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Núñez-Núñez, C.M.; Osorio-Revilla, G.I.; Villanueva-Fierro, I.; Antileo, C.; Proal-Nájera, J.B. Solar Fecal Coliform Disinfection in a Wastewater Treatment Plant by Oxidation Processes: Kinetic Analysis as a Function of Solar Radiation. Water 2020, 12, 639. https://doi.org/10.3390/w12030639
Núñez-Núñez CM, Osorio-Revilla GI, Villanueva-Fierro I, Antileo C, Proal-Nájera JB. Solar Fecal Coliform Disinfection in a Wastewater Treatment Plant by Oxidation Processes: Kinetic Analysis as a Function of Solar Radiation. Water. 2020; 12(3):639. https://doi.org/10.3390/w12030639
Chicago/Turabian StyleNúñez-Núñez, Cynthia M., Guillermo I. Osorio-Revilla, Ignacio Villanueva-Fierro, Christian Antileo, and José B. Proal-Nájera. 2020. "Solar Fecal Coliform Disinfection in a Wastewater Treatment Plant by Oxidation Processes: Kinetic Analysis as a Function of Solar Radiation" Water 12, no. 3: 639. https://doi.org/10.3390/w12030639
APA StyleNúñez-Núñez, C. M., Osorio-Revilla, G. I., Villanueva-Fierro, I., Antileo, C., & Proal-Nájera, J. B. (2020). Solar Fecal Coliform Disinfection in a Wastewater Treatment Plant by Oxidation Processes: Kinetic Analysis as a Function of Solar Radiation. Water, 12(3), 639. https://doi.org/10.3390/w12030639