Climate Change Impacts on Cold Season Runoff in the Headwaters of the Yellow River Considering Frozen Ground Degradation
Abstract
:1. Introduction
2. Study Area and Data Processing
2.1. Study Area
2.2. Data Processing
2.2.1. Hydrometeorological Data
2.2.2. Snow and Frozen Ground
3. Methods
3.1. Identification of Precipitation Types
3.2. The Moving t-Test
3.3. Flow Duration Curves
4. Results
4.1. Runoff Characteristics and Variation Analyses
4.1.1. Runoff Compositions and Their Correlations
4.1.2. The Changes of Runoff Compositions
4.2. Climate Change and Frozen Ground Degradation
4.2.1. Precipitation Changes
4.2.2. The Changes of Temperature and Freezing–Thawing Indices
5. Discussion
5.1. Precipitation Change Impacts on Cold Season Runoff
5.2. Frozen Ground Degradation Impacts on Cold Season Runoff
5.2.1. Frozen Ground Degradation Impacts on Winter Baseflow
5.2.2. Frozen Ground Degradation Impacts on Direct Snowmelt Runoff
5.3. Frozen Ground Degradation Impacts on Water Balance
6. Conclusions
- (1)
- The long-term annual runoff variations can generally be divided into three periods: I. a pre-change period (1961–1989), II. a low-flow period (1990–2002), and III. a recovery period (2003–2013). In period II, the decrease in high flow (Pe < 30%) and low flow (Pe > 70%) presented the same levels (about 30%) as period I. In period III, however, low flow increased by 40% but high flow increased by less than 20% relative to period I.
- (2)
- The intra-annual variations of runoff in the HWYR can be divided into winter baseflow (January to February), snowmelt runoff (March to May), rainy season runoff (June to September), and recession flow (October to December), which account for 4%, 15%, 61%, and 20% of annual runoff, respectively.
- (3)
- The winter baseflow is mainly controlled by rainy season runoff, but the frozen ground degradation altered the relationship between rainy season runoff and winter baseflow. Frozen ground degradation increased ground water discharge rate in winter.
- (4)
- Direct snowmelt runoff remained at the same level during the period 1961–1997 but decreased 31.21% in the period 1997–2013 relative to the period 1961–1997. The direct snowmelt runoff coefficient (Rs) has been linearly decreasing at a rate of 0.0011/year since 1980, which is significantly controlled by DDF.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yamazaki, Y.; Kubota, J.; Ohata, T.; Vuglinsky, V.; Mizuyama, T. Seasonal changes in runoff characteristics on a permafrost watershed in the southern mountainous region of Eastern Siberia. Hydrol. Process. 2010, 20, 453–467. [Google Scholar] [CrossRef]
- Haldorsen, S.; Heim, M.; Dale, B.; Landvik, J.Y.; van der Ploeg, M.; Leijnse, A.; Salvigsen, O.; Hagen, J.O.; Banks, D. Sensitivity to long-term climate change of subpermafrost groundwater systems in svalbard. Quat. Res. 2010, 73, 393–402. [Google Scholar] [CrossRef]
- Lyon, S.W.; Destouni, G. Changes in catchment-scale recession flow properties in response to permafrost thawing in the Yukon river basin. Int. J. Climatol. 2010, 30, 2138–2145. [Google Scholar] [CrossRef]
- Andermann, C.; Longuevergne, L.; Bonnet, S.; Crave, A.; Davy, P.; Gloaguen, R. Impact of transient groundwater storage on the discharge of Himalayan rivers. Nat. Geosci. 2012, 5, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Yang, D.; Gao, B.; Wang, T.; Chen, J.; Chen, Y.; Wang, Y.; Zheng, G. Impacts of climate warming on the frozen ground and eco-hydrology in the yellow river source region, China. Sci. Total Environ. 2017, 605, 830–841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; Van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S. Ground water and climate change. Nat. Clim. Chang. 2013, 3, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Duan, L.; Man, X.; Kurylyk, B.L.; Cai, T.; Li, Q. Distinguishing streamflow trends caused by changes in climate, forest cover, and permafrost in a large watershed in Northeastern China. Hydrol. Process. 2017, 31, 1938–1951. [Google Scholar] [CrossRef]
- Liu, J.; Hayakawa, N.; Lu, M.; Dong, S.; Yuan, J. Hydrological and geocryological response of winter streamflow to climate warming in northeast china. Cold Regions Sci. Technol. 2003, 37(1), 15–24. [Google Scholar] [CrossRef]
- Wang, G.; Mao, T.; Chang, J.; Song, C.; Huang, K. Processes of runoff generation operating during the spring and autumn seasons in a permafrost catchment on semi-arid plateaus. J. Hydrol. 2017, 550, 307–317. [Google Scholar]
- Zhou, Y.; Guo, D.; Qiu, G.; Cheng, G. Geocryology in China; Science Press: Beijing, China, 2000; 450p. (In Chinese) [Google Scholar]
- Ge, S.; Mckenzie, J.; Voss, C.; Wu, Q. Exchange of groundwater and surface-water mediated by permafrost response to seasonal and long term air temperature variation. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Gao, B.; Yang, D.; Qin, Y.; Wang, Y.; Li, H.; Zhang, Y.; Zhang, T. Change in frozen soils and its effect on regional hydrology in the upper heihe basin, the Northeast Qinghai-Tibetan Plateau. Cryosphere 2018, 12, 1–55. [Google Scholar] [CrossRef] [Green Version]
- Walvoord, M.A.; Striegl, R.G. Increased groundwater to stream discharge from permafrost thawing in the Yukon river basin: Potential impacts on lateral export of carbon and nitrogen. Geophys. Res. Lett. 2007, 34, L12402. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Hu, H.; Li, T. The influence of freeze–thaw cycles of active soil layer on surface runoff in a permafrost watershed. J. Hydrol. 2009, 375, 438–449. [Google Scholar] [CrossRef]
- Jacques, J.M.S.; Sauchyn, D.J. Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the northwest territories, Canada. Geophys. Res. Lett. 2009, 36, 329–342. [Google Scholar] [CrossRef]
- Qin, Y.; Gao, B.; Yang, D.; Lei, H.; Fan, W.; Wang, Y.; Cong, Z.; Fan, W. Long-term change in the depth of seasonally frozen ground and its ecohydrological impacts in the qilian mountains, northeastern tibetan plateau. J. Hydrol. 2016, 542(C), 204–221. [Google Scholar] [CrossRef]
- Lyon, S.W.; Destouni, G.; Giesler, R.; Humborg, C.; Mörth, C.M.; Seibert, J.; Karlsson, J.; Troch, P.A. Estimation of permafrost thawing rates in a sub-arctic catchment using recession flow analysis. Hydrol. Earth Syst. Sci. 2009, 13, 595–604. [Google Scholar] [CrossRef] [Green Version]
- Sjöberg, Y.; Frampton, A.; Lyon, S.W. Using streamflow characteristics to explore permafrost thawing in northern swedish catchments. Hydrogeol. J. 2013, 21, 121–131. [Google Scholar] [CrossRef]
- Stewart, I.T.; Prowse, T.D. Changes in snowpack and snowmelt runoff for key mountain regions. Hydrol. Process. 2010, 23, 78–94. [Google Scholar] [CrossRef]
- Haupt, H.F. Infiltration, overland flow, and soil movement on frozen and snow-covered plots. Water Resour. Res. 1967, 3, 145–161. [Google Scholar] [CrossRef]
- Walvoord, M.A.; Kurylyk, B.L. Hydrologic impacts of thawing permafrost—A review. Vadose Zone J. 2016, 15, 1–20. [Google Scholar] [CrossRef]
- McNamara, J.P.; Kane, D.L.; Hinzman, L.D. An analysis of streamflow hydrology in the Kuparuk River Basin, arctic Alaska: A nested watershed approach. J. Hydrol. 1988, 206, 39–57. [Google Scholar] [CrossRef]
- Kane, D.L.; Stein, J. Water movement into seasonally frozen soils. Water Resour. Res. 1983, 19, 1547–1557. [Google Scholar] [CrossRef]
- Hayashi, M.; Kamp, G.V.D.; Schmidt, R. Focused infiltration of snowmelt water in partially frozen soil under small depressions. J. Hydrol. 2003, 270, 214–229. [Google Scholar] [CrossRef]
- Shanley, J.B.; Chalmers, A. The effect of frozen soil on snowmelt runoff at Sleepers River, Vermont. Hydrol. Process. 1999, 13, 1843–1857. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, T. Recent permafrost warming on the Qinghai-Tibetan Plateau. J. Geophys. Res. Atmos. 2008, 113, D13108. [Google Scholar] [CrossRef]
- Jin, H.J.; He, R.X.; Cheng, G.D.; Wu, Q.B.; Wang, S.L.; Chang, X.L. Changes in frozen ground in the source area of the yellow river on the Qinghai-Tibet Plateau, China, and their eco-environmental impacts. Environ. Res. Lett. 2009, 4, 045206. [Google Scholar] [CrossRef]
- Cheng, G.; Jin, H. Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China. Hydrogeol. J. 2013, 21, 5–23. [Google Scholar] [CrossRef]
- Cuo, L.; Zhang, Y.; Gao, Y.; Hao, Z.; Cairang, L. The impacts of climate change and land cover/use transition on the hydrology in the upper Yellow River Basin, China. J. Hydrol. 2013, 502, 37–52. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, L.; Liu, C.; Shao, Q.; Fukushima, Y. Changes in stream flow regime in headwater catchments of the Yellow River basin since the 1950s. Hydrol. Process. 2007, 21, 886–893. [Google Scholar] [CrossRef]
- Meng, F.; Su, F.; Yang, D.; Tong, K.; Hao, Z. Impacts of recent climate change on the hydrology in the source region of the yellow river basin. J. Hydrol. Reg. Stud. 2016, 6, 66–81. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Liang, S.; Wang, X.S.; Feng, Y.; Mckenzie, J. A new assessment of hydrological change in the source region of the yellow river. Water 2018, 10, 877. [Google Scholar] [CrossRef] [Green Version]
- Chang, G.; Lin, L.I.; Zhu, X.; Wang, Z.; Xiao, J.; Fengxia, L.I. Changes and influencing factors of surface water resources in the source region of the yellow river. Acta Geogr. Sin. 2007, 62, 312–320. [Google Scholar]
- Wang, T.; Yang, H.; Yang, D.; Qin, Y.; Wang, Y. Quantifying the streamflow response to frozen ground degradation in the source region of the yellow river within the budyko framework. J. Hydrol. 2018, 558, 301–313. [Google Scholar] [CrossRef]
- Li, S.D.; Cheng, G.D. Map of Permafrost on the Qinghai-Tibet Plateau (1:3,000,000); Gansu Culture Press: Lanzhou, China, 1996. (In Chinese) [Google Scholar]
- Liang, T.G.; Huang, X.D.; Wu, C.X.; Liu, X.Y.; Li, W.L.; Guo, Z.G.; Ren, J.Z. An application of modis data to snow cover monitoring in a pastoral area: A case study in northern Xinjiang, China. Remote Sens. Environ. 2008, 112, 1514–1526. [Google Scholar] [CrossRef]
- Pu, Z.; Xu, L.; Salomonson, V.V. MODIS/Terra observed seasonal variationss of snow cover over the Tibetan Plateau. Geophys. Res. Lett. 2007, 34, L06706. [Google Scholar] [CrossRef] [Green Version]
- Riseborough, D.; Shiklomanov, N.; EtzelmÜLler, B.; Gruber, S.; Marchenko, S. Recent advances in permafrost modelling. Permafr. Periglac. Process. 2010, 19, 137–156. [Google Scholar] [CrossRef]
- Sato, Y.; Ma, X.; Xu, J.; Matsuoka, M.; Zheng, H.; Liu, C.; Fukushima, Y. Analysis of long-term water balance in the source area of the Yellow River basin. Hydrol. Processes 2008, 22, 1618–1629. [Google Scholar] [CrossRef]
- Berghuijs, W.R.; Woods, R.A.; Hrachowitz, M. A precipitation shift from snow towards rain leads to a decrease in streamflow. Nat. Clim. Chang. 2014, 4, 583–586. [Google Scholar] [CrossRef] [Green Version]
- Searcy, J.K. Flow-duration curves. Water Supply Paper, U.S. Geol. Survey Water-Supply Paper 1542-A. 33p, 1960. [Google Scholar]
- Smakhtin, V.U. Restoration of natural daily flow time-series in regulated rivers using non-linear spatial interpolation technique. Regul. Rivers Res. Manag. 1999, 15, 311–323. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, L.; Zhu, R.; Liu, C.; Sato, Y.; Fukushima, Y. Responses of streamflow to climate and land surface change in the headwaters of the yellow river basin. Water Resour. Res. 2009, 45(7), 587–595. [Google Scholar] [CrossRef]
- Tang, Y.; Tang, Q.; Tian, F.; Zhang, Z.; Liu, G. Responses of natural runoff to recent climatic variationss in the Yellow River basin, China. Hydrol. Earth Syst. Sci. 2013, 17, 4471–4480. [Google Scholar] [CrossRef] [Green Version]
- Streletskiy, D.A.; Tananaev, N.I.; Opel, T.; Shiklomanov, N.I.; Nyland, K.E.; Streletskaya, I.D.; Shiklomanov, A.I. Permafrost hydrology in changing climatic conditions: Seasonal variability of stable isotope composition in rivers in discontinuous permafrost. Environ. Res. Lett. 2015, 10, 095003. [Google Scholar] [CrossRef]
- Lamontagne-Hallé, P.; McKenzie, J.M.; Kurylyk, B.L.; Zipper, S.C. Changing groundwater discharge dynamics in permafrost regions. Environ. Res. Lett. 2018, 13, 084017. [Google Scholar] [CrossRef]
- Carey, S.K.; Woo, M.K. Hydrology of two slopes in subarctic Yukon, Canada. Hydrol. Processes 1999, 13, 2549–2562. [Google Scholar] [CrossRef]
- Carey, S.K.; Woo, M.K. Slope runoff processes and flow generation in a subarctic, subalpine catchment. J. Hydrol. 2001, 253, 110–129. [Google Scholar] [CrossRef]
- Sun, A.; Yu, Z.; Zhou, J.; Acharya, K.; Ju, Q.; Xing, R.; Huang, D.; Wen, L. Quantified hydrological responses to permafrost degradation in the headwaters of the Yellow River (HWYR) in High Asia. Sci. Total Environ. 2020, 712, 135632. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cheng, G.; Li, X.; Jin, H.; Yang, D.; Flerchinger, G.N.; Chang, X.; Bense, V.F.; Han, X.; Liang, J. Influences of frozen ground and climate change on hydrological processes in an alpine watershed: A case study in the upstream area of the Hei’he River, Northwest China. Permafr. Periglac. Process 2017, 28, 420–432. [Google Scholar] [CrossRef]
- Zheng, D.; Rogier, V.D.V.; Su, Z.; Wen, J.; Wang, X.; Yang, K. Impact of soil freeze–thaw mechanism on the runoff dynamics of two Tibetan rivers. J. Hydrol. 2018, 563, 382–394. [Google Scholar]
Stations | Snow | Sleet | Rain |
---|---|---|---|
Jimai | T ≤ 1 °C | 1°C < T < 5 °C | 5 °C ≤ T |
Maduo | T ≤ 1 °C | 1°C < T < 4 °C | 4 °C ≤ T |
RSR | RF | WB | SR | DSR | |
---|---|---|---|---|---|
RSR | 1.00 | 0.85 | 0.80 | 0.54 | 0.01 |
RF | - | 1.00 | 0.86 | 0.68 | 0.14 |
WB | - | - | 1.00 | 0.60 | −0.08 |
SR | - | - | - | 1.00 | 0.75 |
DSR | - | - | - | - | 1.00 |
Runoff | Periods | Mean Value (m3/s) | Relative Change | Change Rate (m3/s/year) |
---|---|---|---|---|
Annual mean runoff | 1961–1989 | 139.75 | Reference period | |
1990–2002 | 100.40 | −28.15% | −2.10 | |
2003–2013 | 147.15 | +5.30% | +6.89 | |
Rainy season runoff | 1961–1989 | 256.76 | Reference period | |
1990–2002 | 180.84 | −29.57% | −3.09 | |
2003–2013 | 265.77 | +3.51% | +10.30 | |
Winter baseflow | 1961–1989 | 28.68 | Reference period | |
1990–1999 | 22.21 | −22.56% | +1.10 * | |
2000–2013 | 40.73 | +42.03% | +3.66 * | |
Recession flow | 1961–1989 | 81.68 | Reference period | |
1990–2001 | 76.06 | −6.9% | −2.26 | |
2002–2013 | 76.42 | −6.4% | 6.04 ** | |
Snowmelt runoff | 1961–1997 | 81.33 | Reference period | |
1998–2013 | 74.31 | −8.64% | +0.10 | |
Direct snowmelt runoff | 1961–1997 | 52.76 | Reference period | |
1998–2013 | 36.30 | −31.21% | +0.24 |
Name | Periods | Mean Value | Relative Change | Change Rate |
---|---|---|---|---|
Precipitation | 1961–2002 | 426.98 mm | Reference period | |
2003–2013 | 478.72 mm | +12.12% | +2.61 mm/year | |
Rain | 1961–2001 | 292.33 mm | Reference period | |
2002–2013 | 341.45 mm | +16.09% | +3.44 mm/day/year | |
Precipitation intensity | 1961–1987 | 2.89 mm/day | Reference period | |
1988–1995 | 2.65 mm/day | −8.36% | +0.03 mm/day/year | |
1996–2013 | 3.02 mm/day | +4.49% | +0.03 mm/day/year | |
Snow (9–5) | 1961–1976 | 55.45 mm | Reference period | |
1977–1997 | 75.90 mm | +36.88% | +0.90 * mm/year | |
1998–2013 | 65.85 mm | +18.76% | −0.42 mm/year | |
Sleet + Rain (9–2) | 1961–1999 | 73.79 mm | Reference period | |
2000–2013 | 78.48 mm | +6.35% | −0.68 mm/year | |
Sleet + Rain (3–5) | 1961–1976 | 38.27 mm | Reference period | |
1977–1994 | 32.83 mm | −14.21% | +0.06 mm/year | |
1995–2013 | 47.52 mm | +24.16% | +0.79 mm/year |
Name | Periods | Mean Value | Relative Change | Change Rate |
---|---|---|---|---|
Temperature | 1961–1985 | −2.71 °C | Reference period | |
1986–1996 | −2.19 °C | +0.52 °C | +0.01 °C/year | |
1997–2013 | −1.43 °C | +1.27 °C | +0.07 * °C/year | |
DDT | 1961–1985 | 942.08 °C·day | Reference period | |
1986–1991 | 972.75 °C·day | +3.26% | +10.45 °C·day/year | |
1992–2013 | 1076.68 °C·day | +14.29% | +11.42 ** °C·day/year | |
DDF | 1961–1997 | 1868.94 °C·day | Reference period | |
1998–2013 | 1588.79 °C·day | −14.99% | −14.42 °C·day/year |
Precipitation Groups | WB | SR | DSR | RF |
---|---|---|---|---|
Snow (9–5) | −0.12 | 0.35 | 0.54 | 0.05 |
(Sleet + Rain) (3–5) | 0.07 | −0.15 | −0.24 | 0.03 |
(Sleet + Rain) (9–2) | 0.36 | 0.49 | 0.32 | 0.13 |
Snow (9–5) + (Sleet + Rain) (3–5) | −0.06 | 0.19 | 0.29 | 0.07 |
Snow (9–5) + (Sleet + Rain) (9–2) | 0.25 | 0.60 | 0.55 | 0.14 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, P.; Liang, S.; Wang, X.-S.; McKenzie, J.M.; Feng, Y. Climate Change Impacts on Cold Season Runoff in the Headwaters of the Yellow River Considering Frozen Ground Degradation. Water 2020, 12, 602. https://doi.org/10.3390/w12020602
Wu P, Liang S, Wang X-S, McKenzie JM, Feng Y. Climate Change Impacts on Cold Season Runoff in the Headwaters of the Yellow River Considering Frozen Ground Degradation. Water. 2020; 12(2):602. https://doi.org/10.3390/w12020602
Chicago/Turabian StyleWu, Pan, Sihai Liang, Xu-Sheng Wang, Jeffrey M. McKenzie, and Yuqing Feng. 2020. "Climate Change Impacts on Cold Season Runoff in the Headwaters of the Yellow River Considering Frozen Ground Degradation" Water 12, no. 2: 602. https://doi.org/10.3390/w12020602
APA StyleWu, P., Liang, S., Wang, X. -S., McKenzie, J. M., & Feng, Y. (2020). Climate Change Impacts on Cold Season Runoff in the Headwaters of the Yellow River Considering Frozen Ground Degradation. Water, 12(2), 602. https://doi.org/10.3390/w12020602