An Improved Ecological Footprint Method for Water Resources Utilization Assessment in the Cities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Sources
2.2. Methods
2.2.1. Water Resources Ecological Footprint (WREF)
Water Consumption Ecological Footprint (WCEF)
Water Pollution Ecological Footprint (WPEF)
Water Resources Ecological Footprint
2.2.2. Water Resources Carrying Capacity (WRCC)
2.2.3. Water Resources Utilization Evaluation Indicators
Water Resources Ecological Surplus and Deficit
Water Resources Ecological Pressure Index
Water Resources Ecological Footprint per 10,000 Yuan of GDP
Water Resources Load Index
3. Results
3.1. WREF and WRCC
3.1.1. Water Consumption Ecological Footprint
3.1.2. Water Pollution Ecological Footprint
3.1.3. WREF and WRCC
3.2. Water Resources Utilization Evaluation Indicators
3.2.1. Water Resources Ecological Surplus and Deficit
3.2.2. Water Resources Ecological Pressure Index
3.2.3. Water Resources Ecological Footprint per 10,000 Yuan of GDP
3.2.4. Water Resources Load Index
4. Conclusions and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Antonelli, M.; Sartori, M. Unfolding the potential of the virtual water concept. What is still under debate? Environ. Sci. Policy 2015, 50, 240–251. [Google Scholar] [CrossRef] [Green Version]
- Lant, C. Virtual water and Occam’s razor by Stephen Merrett and Virtual water—The water, food and trade nexus: Useful concept or misleading metaphor? by Tony Allan. Water Int. 2003, 28, 113–115. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K. Water footprints of nations: Water use by people as a function of their consumption pattern. Water Resour. Manag. 2007, 21, 35–48. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.Y.; Mekonnen, M.M. The water footprint of humanity. Proc. Natl. Acad. Sci. USA 2012, 109, 3232–3237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nouri, H.; Borujeni, S.C.; Hoekstra, A.Y. The blue water footprint of urban green spaces: An example for Adelaide, Australia. Landsc. Urban Plan. 2019, 190, 103613. [Google Scholar] [CrossRef]
- Zhang, L.; Dong, H.; Geng, Y.; Francisco, M. China’s provincial grey water footprint characteristic and driving forces. Sci. Total Environ. 2019, 677, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Taiebat, M.; Liu, Y.; Qu, S.; Liang, S.; Xu, M. Regional water footprints and interregional virtual water transfers in China. J. Clean. Prod. 2019, 228, 1401–1412. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K. Appendix IV: Water footprints of nations. period: 1997–2001. In Globalization of Water: Sharing the Planet’s Freshwater Resources; Blackwell Publishing Ltd.: Malden, MA, USA, 2008. [Google Scholar]
- Wang, J.; Liu, X.; Geng, X.; Bentley, Y.; Zhang, C.; Yang, Y. Water Footprint Assessment for Coal-to-Gas in China. Nat. Resour. Res. 2019, 28, 1447–1459. [Google Scholar] [CrossRef]
- Zhai, Y.; Shen, X.; Quan, T.; Ma, X.; Zhang, R.; Ji, C.; Zhang, T.; Hong, J. Impact-oriented water footprint assessment of wheat production in China. Sci. Total Environ. 2019, 689, 90–98. [Google Scholar] [CrossRef]
- Dai, D.; Sun, M.; Xu, X.; Lei, K. Assessment of the water resource carrying capacity based on the ecological footprint: A case study in Zhangjiakou City, North China. Environ. Sci. Pollut. Res. 2019, 26, 11000–11011. [Google Scholar] [CrossRef] [PubMed]
- Inch, J. Our Ecological Footprint: Reducing Human Impact on the Earth. Popul. Environ. 1995, 1, 171–174. [Google Scholar]
- Hoekstra, A.Y. Human appropriation of natural capital: A comparison of ecological footprint and water footprint analysis. Ecol. Econ. 2009, 68, 1963–1974. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Zhang, W.; Jiang, C.; Fan, X. Ecological footprint method in water resources assessment. Acta Ecol. Sin. 2008, 28, 1279–1286. (In Chinese) [Google Scholar]
- Stoeglehner, G.; Edwards, P.; Daniels, P.; Narodoslawsky, M. The water supply footprint (WSF): A strategic planning tool for sustainable regional and local water supplies. J. Clean. Prod. 2011, 19, 1677–1686. [Google Scholar] [CrossRef]
- Wang, S.; Yang, F.; Xu, L.; Du, J. Multi-scale analysis of the water resources carrying capacity of the Liaohe Basin based on ecological footprints. J. Clean. Prod. 2013, 53, 158–166. [Google Scholar] [CrossRef]
- Bowen, G. HYDROLOGY The diversified economics of soil water. Nature 2015, 525, 43–44. [Google Scholar] [CrossRef] [Green Version]
- Bohlke, J.K. Groundwater recharge and agricultural contamination. Hydrogeol. J. 2002, 10, 153–179. [Google Scholar] [CrossRef]
- Wang, F.; Zhu, K.; Song, X. Research Progress of Regional Soil Water Resources Evaluation. Yellow River 2015, 37, 44–48. (In Chinese) [Google Scholar]
- Page, K.L.; Dang, Y.P.; Dalal, R.C.; Reeves, S.; Thomas, G.; Wang, W.; Thompson, J.P. Changes in soil water storage with no-tillage and crop residue retention on a Vertisol: Impact on productivity and profitability over a 50 year period. Soil. Tillage Res. 2019, 194, 104319. [Google Scholar] [CrossRef]
- Wu, F.; Tian, K.; Wang, J.; Bao, H.; Luo, W.; Zhang, H.; Hong, H. Accumulation and translocation of phenanthrene, anthracene and pyrene in winter wheat affected by soil water content. Ecotoxicol. Environ. Saf. 2019, 183. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Baquerizo, M.; Maestre, F.T.; Gallardol, A. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 2013, 502, 672. [Google Scholar] [CrossRef] [PubMed]
- Green, J.K.; Seneviratne, S.I.; Berg, A.M.; Findell, K.L.; Hagemann, S.; Lawrence, D.M.; Gentine, P. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 2019, 565, 476. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Y.; Zhang, J.J.; Han, M.Y.; Yao, Y.X.; Chen, G.Q. Multi-scale water use balance for a typical coastal city in China. J. Clean. Prod. 2019, 236, 117505. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, W.; Wang, X.; Cui, T.; Cheng, Z.; Liu, X.; Wang, S. Analysis of Water Resources Ecological Footprint in Henan Based on Index Factorizing Method. J. China Hydrol. 2017, 37, 57–61. (In Chinese) [Google Scholar]
- Wang, G.; Liu, J. Coordinating Evaluation of Water Resources Environment and Economic Development Based on Improved Water Ecological Footprint: A Case Study of Central Plains Urban Agglomeration. Resour. Environ. Yangtze Basin 2019, 28, 80–90. (In Chinese) [Google Scholar]
- Bo, S.; Zhang, L.; Yang, L.; Zhang, F.; Norse, D.; Zhu, Z. Agricultural Non-Point Source Pollution in China: Causes and Mitigation Measures. Ambio 2012, 41, 370–379. [Google Scholar]
- Shi, L.Z.; Zhou, Y.C. Study of Regional Soil Water Resources Evaluation. Adv. Mater. Res. 2014, 1073–1076, 1702–1705. [Google Scholar] [CrossRef]
- Han, G.; Wang, D.; Xie, X. Pedotransfer functions for prediction of soil bulk density for major types of soils in China. Acta Pedol. Sin. 2016, 53, 93–102. (In Chinese) [Google Scholar]
City | Abbreviation | Area/Total Area (%) | Resident Population (10,000 People) | GDP (100 Million Yuan) | Rainfall (mm) |
---|---|---|---|---|---|
Jinan | JNA | 6.57% | 715 | 6168 | 681 |
Zibo | ZB | 4.90% | 465 | 4241 | 558 |
Dongying | DY | 6.77% | 212 | 3502 | 591 |
Jining | JNI | 9.19% | 830 | 4062 | 682 |
Tai’an | TA | 6.38% | 561 | 3179 | 630 |
Laiwu | LW | 1.85% | 136 | 723 | 639 |
Dezhou | DZ | 8.51% | 574 | 2786 | 566 |
Liaocheng | LC | 7.09% | 598 | 2685 | 579 |
Binzhou | BZ | 7.54% | 386 | 2380 | 631 |
Heze | HZ | 9.99% | 853 | 2418 | 611 |
Zhengzhou | ZZ | 6.12% | 955 | 7520 | 543 |
Kaifeng | JZ | 3.34% | 354 | 1971 | 546 |
Anyang | AY | 4.60% | 511 | 1926 | 575 |
Hebi | HB | 1.79% | 161 | 724 | 544 |
Xinxiang | XX | 6.78% | 572 | 2037 | 556 |
Jiaozuo | KF | 5.15% | 457 | 1621 | 534 |
Puyang | PY | 3.44% | 361 | 1349 | 518 |
sum | 8700 | 49,291 | 9983 |
Water Load Index | Grade | Degree of Water Use | Water Resources Development Conditions |
---|---|---|---|
>10 | I | Very high | Very tough |
5–10 | II | High | Tougher |
2–5 | III | Medium | Medium |
1–2 | IV | Low | Relatively easily |
<1 | V | Very high | Easily |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Zhao, F.; Li, C.; Yi, Y.; Bu, J.; Wang, X.; Liu, Q.; Shu, A. An Improved Ecological Footprint Method for Water Resources Utilization Assessment in the Cities. Water 2020, 12, 503. https://doi.org/10.3390/w12020503
Li H, Zhao F, Li C, Yi Y, Bu J, Wang X, Liu Q, Shu A. An Improved Ecological Footprint Method for Water Resources Utilization Assessment in the Cities. Water. 2020; 12(2):503. https://doi.org/10.3390/w12020503
Chicago/Turabian StyleLi, Hui, Fen Zhao, Chunhui Li, Yujun Yi, Jiuhe Bu, Xuan Wang, Qiang Liu, and Anping Shu. 2020. "An Improved Ecological Footprint Method for Water Resources Utilization Assessment in the Cities" Water 12, no. 2: 503. https://doi.org/10.3390/w12020503
APA StyleLi, H., Zhao, F., Li, C., Yi, Y., Bu, J., Wang, X., Liu, Q., & Shu, A. (2020). An Improved Ecological Footprint Method for Water Resources Utilization Assessment in the Cities. Water, 12(2), 503. https://doi.org/10.3390/w12020503