Eco-Efficiency of End-of-Pipe Systems: An Extended Environmental Cost Efficiency Framework for Wastewater Treatment
Abstract
:1. Introduction
2. Methods and Materials
2.1. General Scheme of ECE Indicators
2.2. Extended Framework of ECE Indicators
2.2.1. Characterization of Oxygen-Depleting Potential
2.2.2. Integration of BDO Category with Water Quality Models
2.3. Application of the Extended Framework to a WWTP Case
2.3.1. Case Description
2.3.2. Evaluation of Environmental Impact Potential
2.3.3. Economic Analysis
2.3.4. Data Processing
3. Results
3.1. Environmental and Economic Assessment
3.2. Eco-Efficiency Analysis Using One-DWQM for the Ashihe River Case
3.3. Eco-Efficiency Analysis Using Two-DWQM for Songhua River Case
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Huppes, G.; Ishikawa, M. A framework for quantified eco-Efficiency analysis. J. Ind. Ecol. 2005, 9, 25–41. [Google Scholar] [CrossRef]
- Shao, L.; Yu, X.; Feng, C. Evaluating the eco-efficiency of China’s industrial sectors: A two-Stage network data envelopment analysis. J. Environ. Manag. 2019, 247, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Mah, C.M.; Fujiwara, T.; Ho, C.S. Life cycle assessment and life cycle costing toward eco-Efficiency concrete waste management in Malaysia. J. Clean. Prod. 2018, 172, 3415–3427. [Google Scholar] [CrossRef]
- Shonnard, D.R.; Kicherer, A.; Saling, P. Industrial applications using BASF eco-Efficiency analysis: Perspectives on green engineering principles. Environ. Sci. Technol. 2003, 37, 5340–5348. [Google Scholar] [CrossRef]
- Bohne, R.A.; Brattebø, H.; Bergsdal, H. Dynamic Eco-Efficiency Projections for Construction and Demolition Waste Recycling Strategies at the City Level. J. Ind. Ecol. 2008, 12, 52–68. [Google Scholar] [CrossRef]
- Hellweg, S.; Doka, G.; Finnveden, G.; Hungerbühler, K. Assessing the Eco-Efficiency of End-of-Pipe Technologies with the Environmental Cost Efficiency Indicator. J. Ind. Ecol. 2005, 9, 189–203. [Google Scholar] [CrossRef]
- Ingaramo, A.; Heluane, H.; Colombo, M.; Cesca, M. Water and wastewater eco-Efficiency indicators for the sugar cane industry. J. Clean. Prod. 2009, 17, 487–495. [Google Scholar] [CrossRef]
- Hellweg, S.; Mila i Canals, L. Emerging approaches, challenges and opportunities in life cycle assessment. Science 2014, 344, 1109–1113. [Google Scholar] [CrossRef]
- Guinee, J.B.; Heijungs, R.; Huppes, G.; Zamagni, A.; Masoni, P.; Buonamici, R.; Ekvall, T.; Rydberg, T. Life cycle assessment: Past, present, and future. Environ. Sci. Technol. 2011, 45, 90–96. [Google Scholar] [CrossRef]
- Ross, S.; Evans, D. Use of life cycle assessment in environmental management. Environ. Manag. 2002, 29, 132–142. [Google Scholar] [CrossRef]
- Bai, S.; Zhao, X.; Wang, D.; Zhang, X.; Ren, N. Engaging multiple weighting approaches and Conjoint Analysis to extend results acceptance of life cycle assessment in biological wastewater treatment technologies. Bioresour. Technol. 2018, 265, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Bai, S.; Li, C.; Yang, J.; Ma, F. Bioaugmentation of atrazine removal in constructed wetland: Performance, microbial dynamics, and environmental impacts. Bioresour. Technol. 2019, 289, 121618. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Bai, S.; Zhang, X. Establishing a decision-support system for eco-Design of biological wastewater treatment: A case study of bioaugmented constructed wetland. Bioresour. Technol. 2019, 274, 425–429. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Zhang, X.; Xiang, Y.; Wang, X.; Zhao, X.; Ren, N. HIT. WATER scheme: An integrated LCA-Based decision-Support platform for evaluation of wastewater discharge limits. Sci. Total Environ. 2019, 655, 1427–1438. [Google Scholar] [CrossRef]
- Corominas, L.; Foley, J.; Guest, J.; Hospido, A.; Larsen, H.; Morera, S.; Shaw, A. Life cycle assessment applied to wastewater treatment: State of the art. Water Res. 2013, 47, 5480–5492. [Google Scholar] [CrossRef]
- Zang, Y.; Li, Y.; Wang, C.; Zhang, W.; Xiong, W. Towards more accurate life cycle assessment of biological wastewater treatment plants: A review. J. Clean. Prod. 2015, 107, 676–692. [Google Scholar] [CrossRef]
- Bai, S.; Wang, X.; Huppes, G.; Zhao, X.; Ren, N. Using site-Specific life cycle assessment methodology to evaluate Chinese wastewater treatment scenarios: A comparative study of site-generic and site-Specific methods. J. Clean. Prod. 2017, 144, 1–7. [Google Scholar] [CrossRef]
- Hernández-Padilla, F.; Margni, M.; Noyola, A.; Guereca-Hernandez, L.; Bulle, C. Assessing wastewater treatment in Latin America and the Caribbean: Enhancing life cycle assessment interpretation by regionalization and impact assessment sensibility. J. Clean. Prod. 2017, 142, 2140–2153. [Google Scholar] [CrossRef]
- Basset-Mens, C.; Anibar, L.; Durand, P.; van der Werf, H.M.G. Spatialised fate factors for nitrate in catchments: Modelling approach and implication for LCA results. Sci. Total Environ. 2006, 367, 367–382. [Google Scholar] [CrossRef]
- Gallego, A.; Rodriguez, L.; Hospido, A.; Moreira, M.T.; Feijoo, G. Development of regional characterization factors for aquatic eutrophication. Int. J. Life Cycle Assess. 2010, 15, 32–43. [Google Scholar] [CrossRef]
- Azevedo, L.B.; Henderson, A.D.; van Zelm, R.; Jolliet, O.; Huijbregts, M.A.J. Assessing the Importance of Spatial Variability versus Model Choices in Life Cycle Impact Assessment: The Case of Freshwater Eutrophication in Europe. Environ. Sci. Technol. 2013, 47, 13565–13570. [Google Scholar] [CrossRef]
- Helmes, R.J.K.; Huijbregts, M.A.J.; Henderson, A.D.; Jolliet, O. Spatially explicit fate factors of phosphorous emissions to freshwater at the global scale. Int. J. Life Cycle Assess. 2012, 17, 646–654. [Google Scholar] [CrossRef] [Green Version]
- Struijs, J.; Beusen, A.; de Zwart, D.; Huijbregts, M. Characterization factors for inland water eutrophication at the damage level in life cycle impact assessment. Int. J. Life Cycle Assess. 2011, 16, 59–64. [Google Scholar] [CrossRef]
- Bai, S.; Wang, X.; Zhao, X.; Ren, N. Characterizing water pollution potential in life cycle impact assessment based on bacterial growth and water quality models. Water 2018, 10, 1621. [Google Scholar] [CrossRef] [Green Version]
- González, S.O.; Almeida, C.; Calderón, M.; Mallea, M.; González, P. Assessment of the water self-Purification capacity on a river affected by organic pollution: Application of chemometrics in spatial and temporal variations. Environ. Sci. Pollut. R 2014, 21, 10583–10593. [Google Scholar] [CrossRef]
- Vagnetti, R.; Miana, P.; Fabris, M.; Pavoni, B. Self-Purification ability of a resurgence stream. Chemosphere 2003, 52, 1781–1795. [Google Scholar] [CrossRef]
- Schnoor, J.L. Environmental Modeling: Fate and Transport of Pollutants in Water, Air, and Soil; John Wiley and Sons: Hoboken, NJ, USA, 1996. [Google Scholar]
- Ostroumov, S. On some issues of maintaining water quality and self-Purification. Water Resour. 2005, 32, 305–313. [Google Scholar] [CrossRef]
- Guinée, J.B. Handbook on life cycle assessment operational guide to the ISO standards. Int. J. Life Cycle Assess. 2001, 7, 311–313. [Google Scholar] [CrossRef]
- Rittmann, B.E.; McCarty, P.L. Environmental Biotechnology: Principles and Applications; Tata McGraw-Hill Education: New York, NY, USA, 2012. [Google Scholar]
- Lap, B.Q.; Mori, K.; Inoue, E. A one-Dimensional model for water quality simulation in medium- and small-Sized rivers. Paddy Water Environ. 2007, 5, 5–13. [Google Scholar] [CrossRef]
- Covelli, P.; Marsili-Libelli, S.; Pacini, G. SWAMP: A two-Dimensional hydrodynamic and quality modeling platform for shallow waters. Numer. Methods Part Differ. Equ. 2002, 18, 663–687. [Google Scholar] [CrossRef]
- Sleeswijk, A.W.; van Oers, L.F.; Guinee, J.B.; Struijs, J.; Huijbregts, M.A. Normalisation in product life cycle assessment: An LCA of the global and European economic systems in the year 2000. Sci. Total Environ. 2008, 390, 227–240. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Zhang, X.; Zeng, S. Measuring and explaining eco-Efficiencies of wastewater treatment plants in China: An uncertainty analysis perspective. Water Res. 2017, 112, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Garcilaso, L.; Gaines, W.; Barkdoll, B. Ecoefficiency Analysis of Existing Industrial Wastewater Treatment: How to Include the External Costs to the Environment. World Environmental and Water Resource Congress. 2006, 867–869. [Google Scholar] [CrossRef]
- Henriques, J.; Catarino, J. Sustainable value-An energy efficiency indicator in wastewater treatment plants. J. Clean. Prod. 2017, 142, 323–330. [Google Scholar] [CrossRef]
- Lorenzo-Toja, Y.; Vã, Z.-R.I.; Chenel, S.; Marã-N-Navarro, D.; Moreira, M.T.; Feijoo, G. Eco-Efficiency analysis of Spanish WWTPs using the LCA + DEA method. Water Res. 2015, 68, 651–666. [Google Scholar] [CrossRef]
- Lorenzo-Toja, Y.; Vã, Z.-R.I.; Amores, M.J.; Termes-Rifã, M.; Marã-N-Navarro, D.; Moreira, M.T.; Feijoo, G. Benchmarking wastewater treatment plants under an eco-Efficiency perspective. Sci. Total Environ. 2016, 566–567, 468–479. [Google Scholar] [CrossRef]
- Renou, S.; Thomas, J.S.; Aoustin, E.; Pons, M.N. Influence of impact assessment methods in wastewater treatment LCA. J. Clean. Prod. 2008, 16, 1098–1105. [Google Scholar] [CrossRef]
- Bai, S.; Ren, N.; You, S.; Zhao, X.; Li, Y.; Wang, X. Modeling the oxygen-Depleting potential and spatially differentiated effect of sewage organics in life cycle assessment for wastewater management. Sci. Total Environ. 2019, 655, 1071–1080. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Zhang, C.; Bai, S. Eco-Efficiency of End-of-Pipe Systems: An Extended Environmental Cost Efficiency Framework for Wastewater Treatment. Water 2020, 12, 454. https://doi.org/10.3390/w12020454
Zhao X, Zhang C, Bai S. Eco-Efficiency of End-of-Pipe Systems: An Extended Environmental Cost Efficiency Framework for Wastewater Treatment. Water. 2020; 12(2):454. https://doi.org/10.3390/w12020454
Chicago/Turabian StyleZhao, Xinyue, Chaofan Zhang, and Shunwen Bai. 2020. "Eco-Efficiency of End-of-Pipe Systems: An Extended Environmental Cost Efficiency Framework for Wastewater Treatment" Water 12, no. 2: 454. https://doi.org/10.3390/w12020454
APA StyleZhao, X., Zhang, C., & Bai, S. (2020). Eco-Efficiency of End-of-Pipe Systems: An Extended Environmental Cost Efficiency Framework for Wastewater Treatment. Water, 12(2), 454. https://doi.org/10.3390/w12020454