Impact of Climate and Geology on Event Runoff Characteristics at the Regional Scale
Abstract
:1. Introduction
2. Data
2.1. Study Catchments
2.2. Meteorological and Hydrological Data
3. Methods
3.1. Estimation of Event Runoff Characteristics
- Determination of direct runoff and baseflow;
- Identification of the start and end of the runoff events;
- Calculation of the selected event runoff characteristics, i.e., peak discharge, runoff coefficient, and recession time constant.
3.2. Potential Impact Variables of Flood Response
4. Results
5. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Merz, R.; Blöschl, G.; Parajka, J. Spatio-temporal variability of event runoff coefficients. J. Hydrol. 2006, 331, 591–604. [Google Scholar] [CrossRef]
- Czikowsky, M.J.; Fitzjarrald, D.R. Evidence of Seasonal Changes in Evapotranspiration in Eastern U.S. Hydrological Records. J. Hydrometeorol. 2004, 5, 974–988. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; Regüés, D.; Alvera, B.; Lana-Renault, N.; Serrano-Muela, P.; Nadal-Romero, E.; Navas, A.; Latron, J.; Martí-Bono, C.; Arnáez, J. Flood generation and sediment transport in experimental catchments affected by land use changes in the central Pyrenees. J. Hydrol. 2008, 356, 245–260. [Google Scholar] [CrossRef][Green Version]
- Viglione, A.; Rogger, M.; Pirkl, H.; Parajka, J.; Blöschl, G. Conceptual model building inspired by field-mapped runoff generation mechanisms. J. Hydrol. Hydromech. 2018, 66, 303–315. [Google Scholar] [CrossRef][Green Version]
- Chen, X.; Parajka, J.; Széles, B.; Strauss, P.; Blöschl, G. Spatial and temporal variability of event runoff characteristics in a small agricultural catchment. Hydrol. Sci. J. 2020, 65, 2185–2195. [Google Scholar] [CrossRef]
- Chen, X.; Parajka, J.; Széles, B.; Strauss, P.; Blöschl, G. Controls on event runoff coefficients and recession coefficients for different runoff generation mechanisms identified by three regression methods. J. Hydrol. Hydromech. 2020, 68, 155–169. [Google Scholar] [CrossRef]
- Scherrer, S.; Naef, F.; Faeh, A.O.; Cordery, I. Formation of runoff at the hillslope scale during intense precipitation. Hydrol. Earth Syst. Sci. Discuss. 2007, 11, 907–922. [Google Scholar] [CrossRef][Green Version]
- Ruggenthaler, R.; Schöberl, F.; Markart, G.; Klebinder, K.; Hammerle, A.; Leitinger, G. Quantification of Soil Moisture Effects on Runoff Formation at the Hillslope Scale. J. Irrig. Drain. Eng. 2015, 141, 05015001. [Google Scholar] [CrossRef]
- Liu, J.; Engel, B.A.; Wang, Y.; Wu, Y.; Zhang, Z.; Zhang, M. Runoff Response to Soil Moisture and Micro-topographic Structure on the Plot Scale. Sci. Rep. 2019, 9, 2532. [Google Scholar] [CrossRef][Green Version]
- Joel, A.; Messing, I.; Seguel, O.; Casanova, M. Measurement of surface water runoff from plots of two different sizes. Hydrol. Process. 2002, 16, 1467–1478. [Google Scholar] [CrossRef]
- Cerdan, O.; Le Bissonnais, Y.; Govers, G.; Lecomte, V.; van Oost, K.; Couturier, A.; King, C.; Dubreuil, N. Scale effect on runoff from experimental plots to catchments in agricultural areas in Normandy. J. Hydrol. 2004, 299, 4–14. [Google Scholar] [CrossRef]
- Burns, D.; Vitvar, T.; McDonnell, J.; Hassett, J.; Duncan, J.; Kendall, C. Effects of suburban development on runoff generation in the Croton River basin, New York, USA. J. Hydrol. 2005, 311, 266–281. [Google Scholar] [CrossRef]
- Western, A.W.; Blöschl, G.; Grayson, R.B. How well do indicator variograms capture the spatial connectivity of soil moisture? Hydrol. Process. 1998, 12, 1851–1868. [Google Scholar] [CrossRef]
- James, A.L.; Roulet, N.T. Investigating hydrologic connectivity and its association with threshold change in runoff response in a temperate forested watershed. Hydrol. Process. 2007, 21, 3391–3408. [Google Scholar] [CrossRef]
- Silasari, R.; Parajka, J.; Ressl, C.; Strauss, P.; Blöschl, G. Potential of time-lapse photography for identifying saturation area dynamics on agricultural hillslopes. Hydrol. Process. 2017, 31, 3610–3627. [Google Scholar] [CrossRef]
- Gottschalk, L.; Weingartner, R. Distribution of peak flow derived from a distribution of rainfall volume and runoff coefficient, and a unit hydrograph. J. Hydrol. 1998, 208, 148–162. [Google Scholar] [CrossRef]
- Norbiato, D.; Borga, M.; Merz, R.; Blöschl, G.; Carton, A. Controls on event runoff coefficients in the eastern Italian Alps. J. Hydrol. 2009, 375, 312–325. [Google Scholar] [CrossRef]
- Penna, D.; Tromp-van Meerveld, H.; Gobbi, A.; Borga, M.; Dalla Fontana, G. The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment. Hydrol. Earth Syst. Sci. 2011, 15, 689–702. [Google Scholar] [CrossRef][Green Version]
- Brammer, D.D.; McDonnell, J.J. An evolving perceptual model of hillslope flow at the Maimai catchment. Adv. Hillslope Process. 1996, 1, 35–60. [Google Scholar]
- Onda, Y.; Komatsu, Y.; Tsujimura, M.; Fujihara, J.-I. The role of subsurface runoff through bedrock on storm flow generation. Hydrol. Process. 2001, 15, 1693–1706. [Google Scholar] [CrossRef]
- Vannier, O.; Anquetin, S.; Braud, I. Investigating the role of geology in the hydrological response of Mediterranean catchments prone to flash-floods: Regional modelling study and process understanding. J. Hydrol. 2016, 541, 158–172. [Google Scholar] [CrossRef]
- Tague, C.; Grant, G.E. A geological framework for interpreting the low-flow regimes of Cascade streams, Willamette River Basin, Oregon. Water Resour. Res. 2004, 40, W04303. [Google Scholar] [CrossRef]
- Weiler, M.; McDonnell, J.J. Conceptualizing lateral preferential flow and flow networks and simulating the effects on gauged and ungauged hillslopes. Water Resour. Res. 2007, 43, W03403. [Google Scholar] [CrossRef][Green Version]
- Krakauer, N.Y.; Temimi, M. Stream recession curves and storage variability in small watersheds. Hydrol. Earth Syst. Sci. 2011, 15, 2377–2389. [Google Scholar] [CrossRef][Green Version]
- Dung, B.X.; Gomi, T.; Miyata, S.; Sidle, R.C. Peak flow responses and recession flow characteristics after thinning of Japanese cypress forest in a headwater catchment. Hydrol. Res. Lett. 2012, 6, 35–40. [Google Scholar] [CrossRef]
- Rinaldo, A.; Beven, K.J.; Bertuzzo, E.; Nicotina, L.; Davies, J.; Fiori, A.; Russo, D.; Botter, G. Catchment travel time distributions and water flow in soils. Water Resour. Res. 2011, 47, W07537. [Google Scholar] [CrossRef]
- Gaál, L.; Szolgay, J.; Kohnová, S.; Parajka, J.; Merz, R.; Viglione, A.; Blöschl, G. Flood timescales: Understanding the interplay of climate and catchment processes through comparative hydrology. Water Resour. Res. 2012, 48, W04511. [Google Scholar] [CrossRef]
- Tetzlaff, D.; Soulsby, C.; Waldron, S.; Malcolm, I.A.; Bacon, P.J.; Dunn, S.M.; Lilly, A.; Youngson, A.F. Conceptualization of runoff processes using a geographical information system and tracers in a nested mesoscale catchment. Hydrol. Process. 2007, 21, 1289–1307. [Google Scholar] [CrossRef]
- Rogger, M.; Pirkl, H.; Viglione, A.; Komma, J.; Kohl, B.; Kirnbauer, R.; Merz, R.; Blöschl, G. Step changes in the flood frequency curve: Process controls. Water Resour. Res. 2012, 48, W05544. [Google Scholar] [CrossRef][Green Version]
- Pirkl, H. Hydrogeologische und Geohydrologische Grundlagen für die Ausgewählten Leiteinzugsgebiete—Unveröffentl. Bericht im Rahmen Projekt Hochwasser Tirol (HOWATI); Geologische Bundesanstalt: Vienna, Austria, 2009.
- Pirkl, H. Untergrundabhängige Abflussprozesse. In Kartierung und Quantifizierung für das Bundesland Tirol; Flächendeckende Aufnahme Osttirols; Geologische Bundesanstalt: Vienna, Austria, 2012. [Google Scholar]
- Rogger, M.; Kohl, B.; Pirkl, H.; Viglione, A.; Komma, J.; Kirnbauer, R.; Merz, R.; Blöschl, G. Runoff models and flood frequency statistics for design flood estimation in Austria—Do they tell a consistent story? J. Hydrol. 2012, 456–457, 30–43. [Google Scholar] [CrossRef]
- Chapman, T.; Maxwell, A. Baseflow separation-comparison of numerical methods with tracer experiments. In Proceedings of the Hydrology and Water Resources Symposium 1996: Water and the Environment; Preprints of Papers; Institution of Engineers: Barton, Australia, 1996; p. 539. [Google Scholar]
- Duan, Q.; Sorooshian, S.; Gupta, V. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res. 1992, 28, 1015–1031. [Google Scholar] [CrossRef]
- Viglione, A.; Parajka, J. TUWmodel: Lumped/Semi-Distributed Hydrological Model for Education Purposes; R Package Version 1.1-1. Available online: https://cran.r-project.org/web/packages/TUWmodel/index.html (accessed on 26 February 2020).
- Parajka, J.; Merz, R.; Blöschl, G. Uncertainty and multiple objective calibration in regional water balance modelling: case study in 320 Austrian catchments. Hydrol. Process. 2007, 21, 435–446. [Google Scholar] [CrossRef]
- Patnaik, S.; Biswal, B.; Nagesh Kumar, D.; Sivakumar, B. Effect of catchment characteristics on the relationship between past discharge and the power law recession coefficient. J. Hydrol. 2015, 528, 321–328. [Google Scholar] [CrossRef]
- Rodríguez-Blanco, M.L.; Taboada-Castro, M.M.; Taboada-Castro, M.T. Rainfall–runoff response and event-based runoff coefficients in a humid area (northwest Spain). Hydrol. Sci. J. 2012, 57, 445–459. [Google Scholar] [CrossRef][Green Version]
- Longobardi, A.; Villani, P.; Grayson, R.; Western, A. On the relationship between runoff coefficient and catchment initial conditions. In Proceedings of the MODSIM, Townsville, Canberra, Australia, 14–17 July 2003; pp. 867–872. [Google Scholar]
- Borga, M.; Boscolo, P.; Zanon, F.; Sangati, M. Hydrometeorological Analysis of the 29 August 2003 Flash Flood in the Eastern Italian Alps. J. Hydrometeorol. 2007, 8, 1049–1067. [Google Scholar] [CrossRef]
Attribute | Wimitzbach | Perschling | Gail | Dornbirnerach |
---|---|---|---|---|
Hotspot region [27] | Gurktal (Gurk) | Flysch (Flysch) | Gail (Gail) | Bregenzerwald (BreWa) |
ID number | 213,256 | 209,486 | 212,613 | 200,204 |
Area (km2) | 106.5 | 55.3 | 146.1 | 51.1 |
Mean slope (%) | 39.4 | 14.3 | 53.4 | 45.0 |
Min-max elevation (m) | 529–1309 | 230–640 | 1094–2622 | 485–1804 |
Mean elevation (m) | 900 | 379 | 1793 | 1118 |
Maximum flow length (km) | 30.8 | 18.6 | 23.3 | 13.9 |
Mean annual runoff (mm/year) | 273 | 301 | 869 | 1793 |
Mean annual prec. (mm/year) | 744 | 876 | 1081 | 1982 |
Mean annual daily air temp. (°C) | 7.8 | 10.0 | 3.5 | 6.8 |
Mean of max. prec. (mm/h) | 14.9 | 19.7 | 13.7 | 24.0 |
Mean of max. prec. (mm/6 h) | 31.7 | 44.4 | 35.0 | 50.0 |
Mean of max. prec. (mm/24 h) | 52.1 | 78.2 | 62.6 | 105.6 |
Mean annual runoff coefficient (-) | 0.37 | 0.34 | 0.80 | 0.90 |
Proportion of surface runoff area (%) | 4.0 | 0 | 7.7 | 9.5 |
Proportion of area with Karst (%) | 0.5 | 0 | 51.0 | 6.0 |
Proportion of area with shallow interflow (%) | 55.4 | 93.5 | 14.0 | 60.0 |
Proportion of area with deep interflow (%) | 37.6 | 0 | 7.3 | 24.0 |
Proportion of area with groundwater flow (%) | 2.5 | 6.5 | 20.0 | 0.5 |
Catchments | Flood Event Types | Spring (March–May) | Summer (June–August) | Autumn (September–November) | Winter (December–February) | Total |
---|---|---|---|---|---|---|
Wimitzbach | Rainfall events | 23 | 69 | 26 | 2 | 120 |
Melt events | 1 | 0 | 0 | 2 | 3 | |
Sum | 24 | 69 | 26 | 4 | 123 | |
Perschling | Rainfall events | 48 | 120 | 46 | 4 | 218 |
Melt events | 7 | 0 | 5 | 20 | 32 | |
Sum | 55 | 120 | 51 | 24 | 250 | |
Gail | Rainfall events | 12 | 128 | 32 | 3 | 175 |
Melt events | 10 | 2 | 4 | 0 | 16 | |
Sum | 22 | 130 | 36 | 3 | 191 | |
Dornbirnerach | Rainfall events | 63 | 183 | 93 | 24 | 363 |
Melt events | 22 | 0 | 5 | 28 | 55 | |
Sum | 85 | 183 | 98 | 52 | 418 |
Features of Event | Wimitzbach | Perschling | Gail | Dornbirnerach | |
---|---|---|---|---|---|
Runoff coefficient (Rc) (-) | 5th percentile | 0.02 | 0.01 | 0.04 | 0.10 |
95th percentile | 0.12 | 0.31 | 0.40 | 1.00 | |
Mean | 0.05 | 0.09 | 0.16 | 0.43 | |
Median | 0.05 | 0.05 | 0.11 | 0.37 | |
Recession time constant (Tc) (h) | 5th percentile | 4.0 | 2.0 | 3.0 | 2.0 |
95th percentile | 39.5 | 30.0 | 35.0 | 15.0 | |
Mean | 18.1 | 10.3 | 12.5 | 6.4 | |
Median | 15.0 | 7.1 | 9.0 | 5.0 | |
Peak flow (Qp) (mm/h) | 5th percentile | 0.03 | 0.02 | 0.09 | 0.13 |
95th percentile | 0.16 | 0.97 | 0.72 | 5.80 | |
Mean | 0.07 | 0.23 | 0.25 | 1.57 | |
Median | 0.06 | 0.07 | 0.18 | 0.89 |
Catchments | Event Type | No. of Events | Event Prec. (mm) | Max. Prec. Intensity (mm/h) | Antec. Precip (mm) | Initial Flow (mm/h) | Duration (h) |
---|---|---|---|---|---|---|---|
Wimitzbach | Short | 3 | 8.3 | 6.2 | 167.5 | 0.03 | 22 |
Medium | 87 | 22.4 | 5.2 | 86.0 | 0.03 | 46 | |
Long | 30 | 40.2 | 5.8 | 70.1 | 0.03 | 86 | |
Melt | 3 | 18.5 | 3.7 | 53.3 | 0.05 | 46 | |
Perschling | Short | 14 | 7.8 | 4.9 | 68.1 | 0.02 | 21 |
Medium | 165 | 17.2 | 5.6 | 79.7 | 0.01 | 43 | |
Long | 49 | 29.2 | 4.4 | 65.2 | 0.02 | 84 | |
Melt | 22 | 22.6 | 2.5 | 50.0 | 0.03 | 82 | |
Gail | Short | 18 | 11.3 | 5.3 | 101.5 | 0.08 | 20 |
Medium | 133 | 19.6 | 5.8 | 111.2 | 0.08 | 38 | |
Long | 24 | 37.4 | 5.3 | 109.0 | 0.09 | 94 | |
Melt | 16 | 27.2 | 5.6 | 118.9 | 0.17 | 75 | |
Dornbirnerach | Short | 24 | 21.9 | 8.7 | 202.3 | 0.10 | 21 |
Medium | 294 | 28.0 | 5.7 | 198.4 | 0.08 | 46 | |
Long | 45 | 43.9 | 5.4 | 190.9 | 0.08 | 89 | |
Melt | 55 | 25.6 | 3.6 | 111.0 | 0.17 | 60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Parajka, J.; Széles, B.; Valent, P.; Viglione, A.; Blöschl, G. Impact of Climate and Geology on Event Runoff Characteristics at the Regional Scale. Water 2020, 12, 3457. https://doi.org/10.3390/w12123457
Chen X, Parajka J, Széles B, Valent P, Viglione A, Blöschl G. Impact of Climate and Geology on Event Runoff Characteristics at the Regional Scale. Water. 2020; 12(12):3457. https://doi.org/10.3390/w12123457
Chicago/Turabian StyleChen, Xiaofei, Juraj Parajka, Borbála Széles, Peter Valent, Alberto Viglione, and Günter Blöschl. 2020. "Impact of Climate and Geology on Event Runoff Characteristics at the Regional Scale" Water 12, no. 12: 3457. https://doi.org/10.3390/w12123457