Estimation of Growth Parameters of the Black Scallop Mimachlamys Varia in the Gulf of Taranto (Ionian Sea, Southern Italy)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Environmental Variables
- v = Volume of acetone 90%, L
- V = Volume of water sample, L
- L = Light path of cuvette, cm
- E664 = Value of absorbance at wavelength 664 nm
- E647 = Value of absorbance at wavelength 647 nm
- E630 = Value of absorbance at wavelength 630 nm.
2.3. Scallop Spat Collection
2.4. Growth
- Lf = final average shell length
- Wf = wet weight at the end of the experiment
- Li = initial average shell length
- Wi = wet weight at the beginning of the experiment
- ln = natural logarithm
- t = number of days of the experimental time.
- Lt: = length at age t
- L∞: asymptotic length
- k: growth constant (rate at which length approaches L∞)
- t0: theoretical age of an animal at a length equal to zero.
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- European Commission. Strategic Guidelines for the sustainable development of EU aquaculture. Communication from the Commission to The European Parliament, The Council, The European Economic and Social Committee and the Committee of the Regions. COM 2013 299 Final. Available online: http://ec.europa.eu/fisheries/cfp/aquaculture/official_documents/com_2013_229_en.pdf (accessed on 27 November 2020).
- Klinger, D.H.; Eikeset, A.M.; Davíðsdóttir, B.; Winter, A.M.; Watson, J.R. The mechanics of blue growth: Management of oceanic natural resource use with multiple, interacting sectors. Mar. Policy 2018, 87, 356–362. [Google Scholar] [CrossRef]
- Bostock, J.; Lane, A.; Hough, C.; Yamamoto, K. An assessment of the economic contribution of EU aquaculture production and the influence of policies for its sustainable development. Aquac. Int. 2016, 24, 699–733. [Google Scholar] [CrossRef] [Green Version]
- Manthey-Karl, M.; Lehmann, I.; Ostermeyer, U.; Rehbein, H.; Schröder, U. Meat Composition and Quality Assessment of King Scallops (Pecten maximus) and Frozen Atlantic Sea Scallops (Placopecten magellanicus) on a Retail Level. Foods 2015, 4, 524–546. [Google Scholar] [CrossRef] [Green Version]
- Telahigue, K.; Chetoui, I.; Imen, R.; Romdhane, M.S.; El Cafsi, M. Comparative fatty acid profiles in edible parts of wild scallops from the Tunisian coast. Food Chem. 2010, 122, 744–746. [Google Scholar] [CrossRef]
- Turolla, E. La venericoltura in Italia. In Estado Actual Del Cultivo Y Manejo De Moluscos Bivalvos Y Su Proyecci On Futura. Factores Que Afectan Su Sustentabilidad En America Latina; Lovatelli, A., Farıas, A., Uriarte, I., Eds.; FAO: Roma, Italy, 2008; pp. 177–188. [Google Scholar]
- Kaiser, M.J.; Clarke, K.R.; Hinz, H.; Austen, M.C.V.; Somerfield, P.J.; Karakassis, I. Global analysis of response and recovery of benthic biota to fishing. Mar. Ecol. Prog. Ser. 2006, 311, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Louro, A.; De La Roche, J.P.; Campos, M.J.; Roman, G. Hatchery rearing of the black scallop Chlamys varia (L.). J. Shellfish Res. 2003, 22, 95–99. [Google Scholar]
- Rathman, M.; Bolotin, J.; Glavić, N.; Barišić, J. Influence of water depth on growth and mortality of Chlamys varia (Linnaeus, 1758): Implications for cage culture in Mali Ston Bay, Croatia. Aquacult. Int. 2017, 25, 135–146. [Google Scholar] [CrossRef]
- Rodhouse, P.G.; Burnell, G.M. In situ studies on the scallop Chlamys varia. In Progress in Underwater Science; Gamble, J.C., George, J.D., Eds.; Pentech Press: Plymouth, UK, 1979; p. 220. [Google Scholar]
- Burnell, G.M. Age-related protandry in the scallop Chlamys varia on the west coast of Ireland. ICES Mar. Sci. 1995, 199, 26–30. [Google Scholar]
- Prato, E.; Biandolino, F.; Parlapiano, I.; Gianguzza, P.; Fanelli, G. The recruitment of scallops (and beyond) by two different artificial collectors (Gulf of Taranto, Mediterranean Sea). Aquac. Res. 2016, 47, 3319–3331. [Google Scholar] [CrossRef]
- Prato, E.; Danieli, A.; Maffia, M.; Biandolino, F. Lipid and fatty acid compositions of Mytilus galloprovincialis cultured in the Mar Grande of Taranto (Southern Italy): Feeding strategies and trophic relationships. Zool. Stud. 2010, 49, 211–219. [Google Scholar]
- Prato, E.; Biandolino, F. Total lipid content and fatty acid composition of commercially important fish species from the Mediterranean, Mar Grande Sea. Food Chem. 2012, 131, 1233–1239. [Google Scholar] [CrossRef]
- Strickland, J.D.H.; Parsons, T.R. A Practical Handbook of Sea Water Analysis; Fisheries Research Board of Canada: Ottawa, PE, Canada, 1972; p. 311. [Google Scholar]
- Pearce, C.M.; Manuel, J.L.; Gallager, S.M.; Manning, D.A.; O’dor, R.K.; Bourget, E. Depth and timing of settlement of veligers from different populations of giant scallop, Placopecten magellanicus (Gmelin), in thermally stratified mesocosms. J. Exp. Mar. Biol. Ecol. 2004, 312, 187–214. [Google Scholar] [CrossRef]
- Wootton, R.J. Ecology of Teleost Fishes; Springer Science and Business Media LLC.: Heidelberg, Germany, 1989; pp. 1–404. [Google Scholar]
- Ricker, W.E. Computation and interpretation of biological statistics of fish populations. B Fish. Res. Board Can. 1975, 191, 1–382. [Google Scholar]
- Von Bertalanffy, L. Untersuchungeun uber die Gesetzlichkeit des Wachstums I. Roux’ Arch. 1934, 131, 613–652. [Google Scholar] [CrossRef]
- Gayanilo, F.C., Jr.; Sparre, P.; Pauly, D. The FAO-ICLARM Stock Assessment Tools II (FISAT II). Revised Version. User’s Guide. FAO Computerized Information Series (Fisheries) 8; FAO: Rome, Italy, 2005; p. 126. [Google Scholar]
- Munro, J.L.; Pauly, D. A Simple Method for comparing growth of fishes and invertebrates. ICLARM Fishbyte 1983, 1, 5–6. [Google Scholar]
- Pauly, D.; Munro, L. Once more on the comparison of growth in Fish and Invertebrate. Fishbyte 1984, 2, 1–21. [Google Scholar]
- Bayne, B.; Newell, R. Physiological Energetics of Marine Molluscs. In The Mollusca; Saleuddin, A.S.M., Wilbur, K.M., Eds.; Elsevier BV: Amsterdam, The Nehterlands, 1983; pp. 407–515. [Google Scholar]
- Zippay, M.L.; Helmuth, B. Effects of temperature change on mussel, Mytilus. Integr. Zoöl. 2012, 7, 312–327. [Google Scholar] [CrossRef]
- Shelmerdine, R.L.; Mouat, B.; Shucksmith, R. The most northerly record of feral Pacific oyster Crassostrea gigas (Thunberg, 1793) in the British Isles. BioInvasions Rec. 2017, 6, 57–60. [Google Scholar] [CrossRef]
- Koch, V.; Rengstorf, A.; Taylor, M.; Mazón-Suástegui, J.M.; Sinsel, F.; Wolff, M. Comparative growth and mortality of cultured Lion’s Paw scallops (Nodipecten subnodosus) from Gulf of California and Pacific populations and their reciprocal transplants. Aquac. Res. 2015, 46, 185–201. [Google Scholar] [CrossRef]
- MacDonald, B.A.; Thompson, R.J. Influence of temperature and food availability on the ecological energetics of the giant scallop Placopecten magellanicus II. Reproductive output and total production. Mar. Ecol. Progr. Ser. 1985, 25, 295–303. [Google Scholar] [CrossRef]
- Lodeiros, C.J.M.; Himmelman, J.H. Influence of fouling on the growth and survival of the tropical scallop, Euvola (Pecten) zic zac (L. 1758) in suspended culture. Aquac. Res. 1996, 27, 749–756. [Google Scholar] [CrossRef]
- Lodeiros, C.; Pico, D.; Prieto, A.; Narváez, N.; Guerra, A. Growth and survival of the pearl oyster Pinctada imbricata (Röding 1758) in suspended and bottom culture in the Golfo de Cariaco, Venezuela. Aquacult. Int. 2002, 10, 327–338. [Google Scholar] [CrossRef]
- Purce, D.N.S. Evaluation of different shallow water culture methods for the scallop Nodipecten subnodosus using biologic and economic modeling. Aquaculture 2006, 254, 301–316. [Google Scholar] [CrossRef] [Green Version]
- Purce, D.N.S. Comparative Ecophysiology of Two Geographically Separated Populations of the Scallop. Master’s Thesis, Western Washington University, Bellingham, WA, USA, 2007; p. 84. [Google Scholar]
- Gwyther, D.; Cropp, D.A.; Joll, L.M.; Dredge, M.C.L. Scallops in Australia. In Scallops: Biology, Ecology and Aquaculture; Shumway, S.E., Ed.; Elsevier: Amsterdam, The Netherlands, 1991; p. 1500. [Google Scholar]
- Navarro-Piquimil, R.; Sturla-Figueroa, L.; Cordero-Contreras, O.; Avendaño, D. Chile. In Scallops: Biology, Ecology and Aquaculture; Shumawy, S.E., Ed.; Elsevier: Amsterdam, The Netherlands, 1991; Volume 21, p. 1500. [Google Scholar]
- Mason, J. Scallop and Queen Fisheries in the British Isles; Fishing News Books Limited: Farnham, UK, 1983; p. 144. [Google Scholar]
- Ansell, A.D.; Dao, J.C.; Mason, J. Three European scallops: Pecten maximus, Chlamys (Aequipecten) opercularis and C. (Chlamys) varia. In Scallops: Biology, Ecology and Aquaculture; Shumway, S.E., Ed.; Elsevier: Amsterdam, The Netherlands, 1991; pp. 715–751. [Google Scholar]
- Ito, H. Japan: Fisheries and aquaculture. In Scallops: Biology, Ecology and Aquaculture; Shumway, S.E., Ed.; Elsevier: Amsterdam, The Netherlands, 1991; pp. 1017–1055. [Google Scholar]
- Maeda-Martínez, A.N.; Reynoso-Granados, T.; Monsalvo-Spencer, P.; Sicard, M.T.; Mazón-Suástegui, J.M.; Hernandez, O.; Segovia, E.; Morales, R. Suspension culture of catarina scallop Argopecten ventricosus (=circularis) (Sowerby II, 1842), in Bahia Magdalena, Mexico, at different densities. Aquaculture 1997, 158, 235–246. [Google Scholar] [CrossRef]
- Félix-Pico, E.F.; And Tripp-Quezada, A.; Castro-Ortiz, J.L.; Serrano-Casillas, G.; Gonzalez-Ramìrez, P.G.; Villalejo-Fuerte, M.; Palomares-García, R.; García-Dominguez, F.A.; Mazón-Suástegui, M.; Bojorquez-Verástica, G.; et al. Repopulation and culture of the Pacific calico scallop in Bahía Concepción, Baja California Sur, México. Aquacult. Int. 1997, 5, 551–563. [Google Scholar] [CrossRef]
- Barber, B.J.; Davis, C.V. Growth and mortality of cultured bay scallops in the Damariscotta River, Maine (USA). Aquac. Int. 1997, 5, 451–460. [Google Scholar] [CrossRef]
- O’connor, W.A.; Heasman, M.P.; O’Connor, S.J. Suspended culture of Dougboy scallops Mimachlamys asperrima (Lamarck). J. World Aquacul. Soc. 1997, 28, 171–179. [Google Scholar] [CrossRef]
- Marguš, D.; Teskeredžić, E.; Teskeredžić, Z.; Tomec, M. Prihvat Ličinki, Preživljavanje I Rast Mlađi Malih Kapica (Chlamys varia Linnaeus, 1758) U Kontroliranom Uzgoju U Uvali Šarina Draga—Ušće Rijeke Krke. Ribarstvo Croat. J. Fish. 2005, 63, 91–103. [Google Scholar]
- Conan, G.; Shafee, S.M. Growth and biannual recruitment of the black scallop Chlamys varia (L.) in lanveoc area, Bay of Brest. J. Exp. Mar. Biol. Ecol. 1978, 35, 59–71. [Google Scholar] [CrossRef]
- Ozvarol, Y.; Gokoglu, M. Some Biological Aspects of Scallop Chlamys varia (Linnaeus, 1758), (Bivalvia: Pectinida) from Aegean Sea coast of Turkey. J. Appl. Biol. Sci. 2013, 7, 68–70. [Google Scholar]
- Pirlot, A.S.; Wolff, M. Population dynamics and fisheries potential of Anadara tuberculosa (Bivalvia: Arcidae) along the Pacific coast of Costa Rica. Rev. Biol. Trop. 2006, 54, 87–99. [Google Scholar]
- Amin, S.; Zafar, M.; Halim, A. Age, growth, mortality and population structure of the oyster, Crassostrea madrasensis, in the Moheskhali Channel (southeastern coast of Bangladesh). J. Appl. Ichthyol. 2008, 24, 18–25. [Google Scholar] [CrossRef]
- Cano, J.; Campos, M.J.; López, F.J.; Saavedra, M. Utilización de distintos sistemas de engorde en el cultivo de vieira Pecten maximus (L., 1758), zamburiña Mimachlamys varia (L., 1758) y volandeira Aequipecten opercularis (L., 1758) en Andalucía (España). Bol. Inst. Esp. Oceanogr. 2006, 21, 283–291. [Google Scholar]
- Freites-Valbuena, L.F.; Mazòn-Suástegui, J.M.; Maeda-Martínez, A.N.; Koch, V.; Osuna-García, M.; Ruiz-Verdugo, C.A.; García-Domínguez, F.A.; De La Roche, J.P.; Manzoni, G.; Rupp, G.R.; et al. Preengorde, cultivo intermedio y engorde de los pectínidos Nodipecten nodosus y N. subnodosus. In Biología y Cultivo de los Moluscos Pectínidos del Género Nodipecten; Maeda-Martinez, A.N., Lodeiros, C., Eds.; Editorial Limusa: Monterrey, México, 2009; Volume 11, pp. 275–312. [Google Scholar]
- Chauvaud, L.; Patry, Y.; Jolivet, A.; Cam, E.; Le Goff, C.; Strand, Ø.; Charrier, G.; Thébault, J.; Lazure, P.; Gotthard, K.; et al. Variation in Size and Growth of the Great Scallop Pecten maximus along a Latitudinal Gradient. PLoS ONE 2012, 7, e37717. [Google Scholar] [CrossRef] [Green Version]
- Mendo, J.; Jurado, E. Length-based growth parameter estimates of the Peruvian scallop (Argopecten purpuratus). Fish. Res. 1993, 15, 357–367. [Google Scholar] [CrossRef]
- Harris, B.P.; Stokesbury, K.D. Shell growth of sea scallops (Placopecten magellanicus) in the southern and northern Great South Channel, USA. ICES J. Mar. Sci. 2006, 63, 811–821. [Google Scholar] [CrossRef] [Green Version]
Immersion Date of Collectors | Ongrowing Starting Date | Biometric Measurement Date | MEA | Immersion Date of Collectors | Starting Date in Suspended Cages | Biometric Measurement Date | MEA | Starting Date in Suspended Cages | Biometric Measurement Date | Sampling Date | MEA |
---|---|---|---|---|---|---|---|---|---|---|---|
Cohort A | 01/04/14 | 01/04/14 | 62 | Cohort D | 13/06/14 | 13/06/14 | 51 | Cohort G | 17/10/14 | 17/10/14 | 85 |
29/01/14 | 13/05/14 | 104 | 23/04/14 | 05/08/14 | 104 | 14/07/14 | 04/11/14 | 113 | |||
27/06/14 | 149 | 18/09/14 | 148 | 21/11/14 | 157 | ||||||
05/08/14 | 188 | 21/10/14 | 181 | 17/12/14 | 183 | ||||||
18/09/14 | 232 | 04/11/14 | 195 | 21/01/15 | 218 | ||||||
21/10/14 | 265 | 17/12/14 | 238 | 24/02/15 | 252 | ||||||
17/12/14 | 322 | 21/01/15 | 273 | 31/03/15 | 287 | ||||||
21/01/15 | 357 | Cohort E | 05/08/14 | 05/08/14 | 84 | 28/04/15 | 315 | ||||
Cohort B | 01/04/14 | 01/04/14 | 42 | 13/05/14 | 18/09/14 | 102 | 29/05/15 | 346 | |||
18/02/14 | 13/05/14 | 84 | 21/10/14 | 135 | 22/06/15 | 370 | |||||
13/06/14 | 115 | 04/11/14 | 149 | 30/07/15 | 416 | ||||||
14/07/14 | 146 | 17/12/14 | 192 | Cohort H | 07/10/14 | 07/10/14 | 63 | ||||
05/08/14 | 168 | 21/01/15 | 227 | 05/08/14 | 21/11/14 | 110 | |||||
03/09/14 | 197 | 24/02/15 | 261 | 17/12/14 | 136 | ||||||
07/10/14 | 231 | 31/03/15 | 296 | 21/01/15 | 171 | ||||||
04/11/14 | 259 | 28/04/15 | 324 | Cohort I | 21/11/14 | 21/11/14 | 48 | ||||
17/12/14 | 295 | 29/05/15 | 355 | 03/09/2014 | 17/12/14 | 64 | |||||
Cohort C | 13/05/14 | 13/05/14 | 69 | 22/06/15 | 379 | 21/01/15 | 99 | ||||
05/03/14 | 05/08/14 | 153 | Cohort F | 19/08/14 | 19/08/14 | 67 | 24/02/15 | 133 | |||
21/10/14 | 230 | 13/06/14 | 03/09/14 | 82 | 31/03/15 | 168 | |||||
17/12/14 | 287 | 21/10/14 | 130 | 28/04/15 | 196 | ||||||
21/01/15 | 322 | 04/11/14 | 144 | 29/05/15 | 227 | ||||||
17/12/14 | 187 | ||||||||||
21/01/15 | 222 |
Cohort A (January) | Cohort B (February) | Cohort C (March) | Cohort D (April) | Cohort E (May) | Cohort F (June) | Cohort G. (July) | Cohort H (August) | Cohort I (September) | |
---|---|---|---|---|---|---|---|---|---|
Inizial TL (mm) | 17.0 ± 2.0 c | 12.7 ± 1.8 a | 26.8 ± 2.3 g | 24.2 ± 2.4 f | 20.0 ± 2.4 d | 13.7 ± 2.1 c | 14.1 ± 1.2 b | 17.7 ± 1.3 c | 22.3 ± 0.2 e |
Final TL (mm) | 48.5 ± 3.1 e | 41.4 ± 3.3 c | 44.4 ± 3.0 d | 46.5 ± 2.8 d,e | 44.0 ± 2.1 d | 31.9 ± 3.3 a | 40.2 ± 3.0 c | 33.1 ± 2.7 a | 36.7 ± 3.3 b |
AGRl mm /day | 0.088 ± 0.1 d,e | 0.097 ± 0.2 e | 0.055 ± 0.1 a | 0.082 ± 0.1 c,d,e | 0.063 ± 0.0 a,b | 0.083 ± 0.1 b,c,d | 0.063 ± 0.01 a,b | 0.095 ± 0.0 e | 0.063 ± 0.1 a,b |
SGRl (%) | 0.29 ± 0.07 b,c | 0.40 ± 0.09 c | 0.16 ± 0.07 a | 0.24 ± 0.05 a,b | 0.21 ± 0.07 a,b | 0.38 ± 0.06 c | 0.25 ± 0.06 a,b | 0.38 ± 0.08 c | 0.22 ± 0.05 a,b |
Inizial TW (g) | 0.64 ± 0.3 b | 0.30 ± 0.1 a | 2.50 ± 0.8 f | 2.00 ± 0.6 e | 1.00 ± 0.3 c | 0.36 ± 0.1 b | 0.44 ± 0.2 a | 0.76 ± 0.3 b | 1.40 ± 0.4 d |
Final TW(g) | 13.9 ± 3.0 e,f | 9.46 ± 1.9 d | 10.66 ± 1.8 e | 12.2 ± 2.4 f | 9.24 ± 1.2 d | 4.14 ± 1.1 a | 7.45 ± 1.5 c | 4.74 ± 1.0 a | 5.75 ± 1.3 b |
AGRw g/day | 0.037 ± 0.01 d,e | 0.031 ± 0.00 c,d,e | 0.025 ± 0.00 b,c | 0.037 ± 0.01 e | 0.022 ± 0.01 b,c | 0.017 ± 0.00 a | 0.017 ± 0.00 a | 0.026 ± 0.01 c,d | 0.019 ± 0.01 a,b |
SGRw (%) | 0.88 ± 0.09 c | 1.17 ± 0.18 d | 0.45 ± 0.08 a | 0.66 ± 0.08 b,c | 0.59 ± 0.10 a,b | 1.10 ± 0.12 c | 0.68 ± 0.12 b,c | 1.12 ± 0.14 d | 0.62 ± 0.06 b |
Temperature (°C) | Dissolved Oxygen (%) | Ch-a (μg/L) | ||
---|---|---|---|---|
Cohort A | TL (mm) | −0.33 | 0.09 | 0.81 *** |
TW (g) | −0.55 | 0.18 | 0.92 *** | |
Cohort B | TL (mm) | −0.14 | 0.15 | 0.81 *** |
TW (g) | −0.42 | 0.25 | 0.92 *** | |
Cohort C | TL (mm) | −0.37 | 0.08 | 0.83 *** |
TW (g) | −0.80 ** | 0.3 | 0.93 *** | |
Cohort D | TL (mm) | −0.78 * | 0.27 | 0.85 *** |
TW (g) | −0.88 *** | 0.23 | −0.16 | |
Cohort E | TL (mm) | −0.76 * | 0.39 | 0.63 * |
TW (g) | −0.72 *** | 0.26 | 0.57 | |
Cohort F | TL (mm) | −0.94 * | 0.76 | 0.99 *** |
TW (g) | −0.85 *** | 0.24 | 0.96 *** | |
Cohort G | TL (mm) | 0.06 | −0.71 * | −0.12 |
TW (g) | 0.26 | −0.68 * | −0.26 | |
Cohort H | TL (mm) | −0.91 * | −0.87 | 0.87 *** |
TW (g) | −0.83 | −0.75 | 0.92 *** | |
Cohort I | TL (mm) | −0.7 | 0.49 | 0.16 |
TW (g) | −0.56 | 0.58 | 0.02 |
Months | N | W=aTL b | p-Value | ||
---|---|---|---|---|---|
a ± S.E. | b ± S.E. | R2 | (t-Test) | ||
Cohort A (January) | 200 | 0.28 ± 0.08 | 2.95 ± 0.24 | 0.77 | 0.65 |
Cohort B (February) | 254 | 0.21 ± 0.03 | 2.64 ± 0.11 | 0.84 | 0.005 |
Cohort C (March) | 150 | 0.19 ± 0.03 | 2.69 ± 0.11 | 0.92 | 0.008 |
Cohort D (April) | 196 | 0.18 ± 0.02 | 2.71 ± 0.08 | 0.82 | 0.003 |
Cohort E (May) | 285 | 0.21 ± 0.03 | 2.61 ± 0.11 | 0.84 | 0.003 |
Cohort F (June) | 149 | 0.18 ± 0.02 | 2.77 ± 0.07 | 0.94 | 0.005 |
Cohort G (July) | 284 | 0.19 ± 0.03 | 2.68 ± 0.08 | 0.89 | 0.002 |
Cohort H (August) | 90 | 0.25 ± 0.09 | 2.54 ± 0.20 | 0.85 | 0.02 |
Cohort I (September) | 160 | 0.17 ± 0.01 | 2.69± 0.05 | 0.95 | 0.0004 |
L∞ ( mm) | K (year−1) | to (year) | ϕ′ | |
---|---|---|---|---|
Cohort A (Jane) | 52.2 | 0.35 | 0.75 | 2.98 |
Cohort B (February) | 50.28 | 0.14 | 0.07 | 2.56 |
Cohort C (March) | 45.81 | 0.33 | 0.5 | 2.84 |
Cohort D (April) | 51.2 | 0.32 | 0.8 | 2.92 |
Cohort E (May) | 45.15 | 0.3 | 0.49 | 2.79 |
Cohort F (June) | 37.98 | 0.23 | 0.05 | 2.52 |
Cohort G (July) | 43.94 | 0.22 | 0.35 | 2.63 |
Cohort H (August) | 34.18 | 0.91 | 1.15 | 3.03 |
Cohort I (September) | 42.24 | 0.27 | 0.24 | 2.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prato, E.; Biandolino, F.; Parlapiano, I.; Papa, L.; Denti, G.; Fanelli, G. Estimation of Growth Parameters of the Black Scallop Mimachlamys Varia in the Gulf of Taranto (Ionian Sea, Southern Italy). Water 2020, 12, 3342. https://doi.org/10.3390/w12123342
Prato E, Biandolino F, Parlapiano I, Papa L, Denti G, Fanelli G. Estimation of Growth Parameters of the Black Scallop Mimachlamys Varia in the Gulf of Taranto (Ionian Sea, Southern Italy). Water. 2020; 12(12):3342. https://doi.org/10.3390/w12123342
Chicago/Turabian StylePrato, Ermelinda, Francesca Biandolino, Isabella Parlapiano, Loredana Papa, Giuseppe Denti, and Giovanni Fanelli. 2020. "Estimation of Growth Parameters of the Black Scallop Mimachlamys Varia in the Gulf of Taranto (Ionian Sea, Southern Italy)" Water 12, no. 12: 3342. https://doi.org/10.3390/w12123342
APA StylePrato, E., Biandolino, F., Parlapiano, I., Papa, L., Denti, G., & Fanelli, G. (2020). Estimation of Growth Parameters of the Black Scallop Mimachlamys Varia in the Gulf of Taranto (Ionian Sea, Southern Italy). Water, 12(12), 3342. https://doi.org/10.3390/w12123342