A Study on Heavy Metals in the Surface Soil of the Region around the Qinghai Lake in Tibet Plateau: Pollution Risk Evaluation and Pollution Source Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Sample Collection and Analysis
2.3. Pollution and Risk Evaluation Method
2.3.1. Pollution Evaluation Method
2.3.2. Potential Ecological Risk Evaluation Method
2.3.3. Human Health Risk Evaluation Method
2.4. Heavy Metal Source Analysis Method
3. Results and Analysis
3.1. Analysis of Pollution Characteristics of Heavy Metals in Soil
3.2. Evaluation of Pollution of Heavy Metals in Soil
3.2.1. Geo-Accumulation Index
3.2.2. Nemerow Index
3.3. Risk Evaluation of Heavy Metals in Soil
3.3.1. Potential Ecological Risk Evaluation
3.3.2. Human Health Risk Evaluation
3.4. Source Analysis of Heavy Metals in Soil
4. Conclusions
5. Recommendations and Future Research
Author Contributions
Funding
Conflicts of Interest
References
- Zhu, L.; Liu, J.; Xu, S.; Xie, Z. Deposition behavior, risk assessment and source identification of heavy metals in reservoir sediments of Northeast China. Ecotoxicol. Environ. Saf. 2017, 142, 454–463. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Zhang, Y.; Huang, B.; Teng, Y. Soil environmental quality in greenhouse vegetable production systems in eastern China: Current status and management strategies. Chemosphere 2017, 170, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Anahi, A.; Francisco, B.; Avto, G.; Felipe, G.O. Health risk of heavy metal in street dust. Front. Biosci. 2021, 26, 327–345. [Google Scholar]
- Islam, S.; Hossain, M.B.; Matin, A.; Sarker, S.I. Assessment of heavy metal pollution, distribution and source apportionment in the sediment from Feni River estuary, Bangladesh. Chemosphere 2018, 202, 25–32. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, D.; Wang, C.; Fu, X.; Wu, G. Impact of coal power generation on the characteristics and risk of heavy metal pollution in nearby soil. Ecosyst. Health Sustain. 2020, 6. [Google Scholar] [CrossRef]
- Hong, H.; Dai, M.; Lu, H.; Liu, J.; Zhang, J.; Yan, C. Risk assessment and driving factors for artificial topography on element heterogeneity: Case study at Jiangsu, China. Environ. Pollut. 2018, 233, 246–260. [Google Scholar] [CrossRef]
- Yang, A.; Wang, Y.H.; Hu, J.; Liu, X.l.; Li, J. Evaluation and Source of Heavy Metal Pollution in Surface Soil of Qinghai-Tibet Platean. J. Environ. Sci. 2020, 41, 886–894, (In Chinese with English abstract). [Google Scholar]
- Wu, J.; Duan, D.; Lu, J.; Luo, Y.; Wen, X.; Guo, X.; Boman, B.J. Inorganic pollution around the Qinghai-Tibet Plateau: An overview of the current observations. Sci. Total Environ. 2016, 550, 628–636. [Google Scholar] [CrossRef]
- Gao, X.C.; Cao, X.S.; Li, T.; Lv, M.J. Evolution of accessibility spatial pattern of the Qinghai-Tibet Plateau in 1976–2016. Acta Geogr. Sin. 2019, 74, 1190–1204, (In Chinese with English abstract). [Google Scholar]
- Jin, Z.; Han, Y.; Chen, L. Past atmospheric Pb deposition in Lake Qinghai, northeastern Tibetan Plateau. J. Paleolimnol. 2009, 43, 551–563. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, H.; Shi, Q.Q.; Zhang, H.; Liu, D.; Zhao, Y. Spatial heterogeneity of heavy metals and influencing factors in the surface cultivated soil of the loess hilly-gully region, China. J. Agro-Environ. Sci. 2019, 38, 2465–2475, (In Chinese with English abstract). [Google Scholar]
- Liu, D.; Zhao, Y.H.; Zhou, D.; Zhang, J. Ecological risk assessment of heavy metals pollution in a tungsten mine soil in south of Jiangxi Province. Environ. Chem. 2017, 36, 1556–1567. [Google Scholar]
- Lin, C.; Xue, Y.; Zhang, X.; Renqin, D.; Zhou, X.; Cao, Y.; Guo, B.; Liu, X. Distribution of cadmium among multimedia in Lake Qinghai, China. Environ. Earth Sci. 2018, 77, 153. [Google Scholar] [CrossRef]
- Han, Y.M.; Wei, C.; Bandowe, B.A.M.; Wilcke, W.; Cao, J.; Xu, B.Q.; Gao, S.P.; Tie, X.X.; Li, G.H.; Jin, Z.D.; et al. Elemental Carbon and Polycyclic Aromatic Compounds in a 150-Year Sediment Core from Lake Qinghai, Tibetan Plateau, China: Influence of Regional and Local Sources and Transport Pathways. Environ. Sci. Technol. 2015, 49, 4176–4183. [Google Scholar] [CrossRef] [PubMed]
- State Environmental Protection Administration. The Technical Specification for Soil Environmental Monitoring; China Environmental Protection Industry Standard; HJ/T166-2004; China Environment Press: Beijing, China, 2004; pp. 10–16. (In Chinese)
- State Environmental Protection Administration. Soil-Determination of pH-Potentiometry; China Environmental Protection Industry Standard; HJ 962-2008; China Environment press: Beijing, China, 2008; pp. 6–11. (In Chinese)
- Müller, G. Index of geoaccumulation in sediments of the Rhine River. Geojournal 1969, 2, 108–118. [Google Scholar]
- Zahra, A.; Hashmi, M.Z.; Malik, R.N.; Ahmed, Z. Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the Kurang Nallah—Feeding tributary of the Rawal Lake Reservoir, Pakistan. Sci. Total Environ. 2014, 470–471, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Nemerow, N.L. Scientific Stream Pollution Analysis; Scripta Book Co.: Washington, DC, USA, 1974; pp. 210–231. [Google Scholar]
- Amouei, A.; Fallah, H.; Asgharnia, H.; Mousapour, A.; Parsian, H.; Hajiahmadi, M.; Khalilpour, A.; Tabarinia, H. Comparison of heavy metals contamination and ecological risk between soils enriched with compost and chemical fertilizers in the North of Iran and ecological risk assessment. Environ. Health Eng. Manag. 2020, 7, 7–14. [Google Scholar] [CrossRef]
- Xia, P.; Ma, L.; Sun, R.; Yang, Y.; Tang, X.; Yan, D.; Lin, T.; Zhang, Y.; Yi, Y. Evaluation of potential ecological risk, possible sources and controlling factors of heavy metals in surface sediment of Caohai Wetland, China. Sci. Total Environ. 2020, 740, 140231. [Google Scholar] [CrossRef]
- Chen, Y.X.; Jiang, X.S.; Wang, Y.; Zhuang, D.F. Assessment of ecological environment and human health of heavy metals in mining area based on GIS. Acta Sci. Circumstantiae 2018, 38, 1642–1652, (In Chinese with English abstract). [Google Scholar]
- Li, L.; Cui, J.; Liu, J.H.; Gao, J.J.; Bai, Y.X.; Shi, X.F. Extensive study of potential harmful elements (Ag, As, Hg, Sb and Se) in surface sediments of the Bohai Sea, China: Sources and environmental risks. Environ. Pollut. 2016, 219, 432–439. [Google Scholar] [CrossRef]
- Fernández, J.; Fernández, J. Evaluation of Contamination, by Different Elements, in Terrestrial Mosses. Arch. Environ. Contam. Toxicol. 2001, 40, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Rossi, E.; Pecorini, I.; Iannelli, R. Methane oxidation of residual landfill gas in a full-scale biofilter: Human health risk assessment of volatile and malodours compound emissions. Environ. Sci. Pollut. Res. 2020, 1–13. [Google Scholar] [CrossRef] [PubMed]
- State Environmental Protection Administration. Technical Guidelines for Risk Assessment of Contaminated Sites; China Environmental Protection Industry Standard; HJ 25.3-2014; China Environment Press: Beijing, China, 2014; pp. 6–10. (In Chinese)
- Wiltse, J.; Dellarco, V.L. U.S. Environmental Protection Agency guidelines for carcinogen risk assessment: Past and future. Mutat. Res. Genet. Toxicol. 1996, 365, 3–15. [Google Scholar] [CrossRef]
- Norris, G.; Duvall, R.; Brown, S.; Bai, S. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide; EPA/600/R-14/108 (NTIS PB2015-105147); U.S. Environmental Protection Agency: Washington, DC, USA, 2014; pp. 1–40.
- Nielsen, D.R.; Bouma, J. Spatial Variability: Its Documentation, Accommodation, and Implication to Soil Surveys. In Soil Spatial Variability; Wageningen University Press: Wageningen, The Netherlands, 1985; pp. 166–194. [Google Scholar]
- Zhang, H.M. Pollution Characteristics and Risk Assessments of Heavy Metals in Soils and Dusts from the Intensive Human Impact Areas; Zhejaing University Press: Hangzhou, China, 2017; pp. 12–38. (In Chinese) [Google Scholar]
- Wang, S.; Wang, Q.-S.; Wen, H.-H.; Luo, J.; Wang, Q.-S.; Liu, X. Spatial distribution and source apportionment of heavy metals in soil from a typical county-level city of Guangdong Province, China. Sci. Total Environ. 2019, 655, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.L.; Zhu, Y.C.; Dai, J.R.; Liu, Y.; Bin, J.S. Identifying dieorigins and spatial distributions of heavy metals in soils of Ju country (Eastern China) using multivariate and geostatistical approach. J. Soils Sediment. 2015, 15, 16–178. [Google Scholar] [CrossRef]
- Liu, C.-A.; Liang, M.-Y.; Nie, Y.; Tang, J.-W.; Siddique, K.H. The conversion of tropical forests to rubber plantations accelerates soil acidification and changes the distribution of soil metal ions in topsoil layers. Sci. Total Environ. 2019, 696, 134082. [Google Scholar] [CrossRef]
- Shah, M.T.; Ara, J.; Muhammad, S.; Khan, S.M.; Tariq, S.M. Health risk assessment via surface water and sub-surface water consumption in the mafic and ultramafic terrain, Mohmand agency, northern Pakistan. J. Geochem. Explor. 2012, 118, 60–67. [Google Scholar] [CrossRef]
- Tan, J.; Zhang, L.; Zhou, X.; Duan, J.; Li, Y.; Jingchun, D.; He, K. Chemical characteristics and source apportionment of PM 2.5 in Lanzhou, China. Sci. Total Environ. 2017, 601, 1743–1752. [Google Scholar] [CrossRef]
- Wang, G.; Zeng, C.; Zhang, F.; Zhang, Y.; Scott, C.A.; Yan, X. Traffic-related trace elements in soils along six highway segments on the Tibetan Plateau: Influence factors and spatial variation. Sci. Total Environ. 2017, 581–582, 811–821. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Zhang, Y.; Ding, M.; Li, L. Identification of traffic-related metals and the effects of different environments on their enrichment in roadside soils along the Qinghai–Tibet highway. Sci. Total Environ. 2015, 521–522, 160–172. [Google Scholar] [CrossRef]
Instrument Name | Model Number | Conditions | Country |
---|---|---|---|
ICP-AES | Arcos | The room temperature should be maintained at a fixed temperature between 20 °C and 25 °C. | Kleve Germany |
Microwave digestion apparatus | MARS 6 | The best operating temperature is 5–40 °C. Humidity between 10–85%. | Matthews, NC, USA |
PH meter | PHS-2F | The temperature compensation range is manual (0.0–60.0) °C. The measurement range is 0.00–14.00 pH and −1400–1400 MV. | Shanghai China |
Analytical Balance | FA2004N | The reading accuracy is 0.1 mg. The weighing range is 0–200 g. The scale size is 80 mm. | Shanghai China |
Centrifuge | TGL18M | The temperature range is −20−40 °C. The maximum speed is 18,000 r/min. | Xi’an China |
Thermostatic water bath oscillator | SHA-B | The temperature is controlled from room temperature to 99 °C. The oscillation amplitude is 20 mm. The oscillation mode is reciprocating gyration. | Shanghai China |
Geo-Accumulation Index | Nemerow Pollution Index | ||
---|---|---|---|
Igeo | Pollution Category | Pn | Pollution Category |
Igeo ≤ 0 | Unpolluted | Pn ≤ 0.7 | Clean (Safe) |
0 < Igeo ≤ 1 | From unpolluted to moderately polluted | 0.7 < Pn ≤ 1 | Still clean (Cordon) |
1 < Igeo ≤ 2 | Moderately polluted | 1 < Pn ≤ 2 | Light polluted |
2 < Igeo ≤ 3 | Moderately to stronglypolluted | 2< Pn ≤ 3 | Moderately polluted |
3 < Igeo ≤ 4 | Strongly polluted | Pn > 3 | Strongly polluted |
4 < Igeo ≤ 5 | Strongly to extremely polluted | – | – |
Igeo > 5 | Extremely polluted | – | – |
Hakanson Classification Standard | This Study | |||
---|---|---|---|---|
Potential Ecological Risk Category | Er | RI | Er | RI |
Low risk | Er < 40 | RI < 150 | Er < 40 | RI < 72 |
Moderate | 40 ≤ Er < 80 | 150 ≤ RI < 300 | 40 ≤ Er < 80 | 72 ≤ RI < 144 |
Higher | 80 ≤ Er < 160 | 300 ≤ RI < 600 | 80 ≤ Er < 160 | 144 ≤ RI < 288 |
High | 160 ≤ Er < 320 | RI ≥ 600 | 160 ≤ Er < 320 | RI ≥ 288 |
Serious | Er ≥ 320 | - | Er ≥ 320 | - |
Parameter | Definition | Child | Adult |
---|---|---|---|
IngR (mg/d) | Ingestion rate of soil | 200 | 100 |
EF (d/a) | Exposure frequency | 350 | 350 |
Ed (a) | Exposure duration | 6 | 24 |
BW (kg) | Body weight of the exposed individual | 15.9 | 56.8 |
ATca (d) | Carcinogenic effect time | 26,280 | 26,280 |
ATnc (d) | Noncarcinogenic effect time | 9125 | 9125 |
InhR (m3/d) | Inhalation rate of soil | 7.5 | 14.5 |
PEF (m3/kg) | Particle emission factor | 1.36 × 109 | 1.36 × 109 |
SA (cm2) | Surface area of exposed skin | 2800 | 5700 |
AF (mg/cm2) | Skin adherence factor of soil | 0.2 | 0.07 |
ABS | Dermal absorption factor | 0.001 | 0.001 |
Heavy Metals | Reference Dose (RfD) | Slope Factors (SF) | ||||
---|---|---|---|---|---|---|
RfDing | RfDinh | RfDdermal | SFing | SFinh | SFdermal | |
As | 3.00 × 10−4 | 1.50 × 10−5 | 3.00 × 10−4 | 1.50 | 3.66 | 1.50 |
Cd | 1.00 × 10−3 | 1.00 × 10−3 | 1.00 × 10−5 | 6.10 | 1.80 × 10−3 | 6.10 |
Co | 2.00 × 10−2 | 5.71 × 10−6 | 1.60 × 10−2 | – | 9.80 | – |
Cr | 3.00 × 10−3 | 2.86 × 10−5 | 6.00 × 10−5 | 5.00 × 10−1 | 4.20 × 10 | 2.00 × 10 |
Cu | 4.00 × 10−2 | 4.00 × 10−2 | 1.20 × 10−2 | – | – | – |
Mn | 4.60 × 10−2 | 1.43 × 10−5 | 1.84 × 10−3 | – | – | – |
Ni | 2.00 × 10−2 | 2.06 × 10−2 | 5.40 × 10−3 | – | 1.00 | – |
Pb | 3.50 × 10−3 | 3.52 × 10−3 | 5.25 × 10−4 | – | – | – |
Zn | 3.00 × 10−1 | 3.00 × 10−1 | 6.00 × 10−2 | – | – | – |
Element | Content Range | Median | Mean | CV | Background Value of Qinghai Soil | Exceeding the Soil Background Value of Qinghai Province | Quality Standard of Soil Environmental | |
---|---|---|---|---|---|---|---|---|
6.5 < pH ≤ 7.5 | pH > 7.5 | |||||||
As | 0.96–18.52 | 12.61 | 11.73 | 32 | 14 | 31 | 30 | 25 |
Cd | 0.05–5.57 | 0.20 | 0.62 | 227 | 0.137 | 73 | 0.3 | 0.6 |
Co | 3.29–23.09 | 13.14 | 12.38 | 30 | 10.1 | 68 | – | – |
Cr | 11.50–60.93 | 47.13 | 41.35 | 31 | 70.1 | 0 | 200 | 250 |
Cu | 2.06–74.38 | 21.07 | 19.33 | 46 | 24.1 | 21 | 100 | 100 |
Mn | 190.94–878.18 | 575.87 | 546.96 | 29 | 580 | 43 | – | – |
Ni | 6.23–31.62 | 23.04 | 21.18 | 33 | 29.6 | 7 | 100 | 190 |
Pb | 7.46–35.09 | 21.85 | 21.86 | 30 | 20.9 | 52 | 120 | 170 |
Zn | 17.30–98.62 | 68.77 | 63.51 | 31 | 80.3 | 18 | 250 | 300 |
Type of Risk | Element | Direct Ingestion | Respiratory Inhalation | Skin Absorption | Total Risk | ||||
---|---|---|---|---|---|---|---|---|---|
Adult | Child | Adult | Child | Adult | Child | Adult | Child | ||
Non-carcinogenic | As | 6.34 × 10−2 | 1.13 × 10−3 | 1.35 × 10−4 | 6.24 × 10−5 | 2.53 × 10−4 | 3.17 × 10−4 | 6.38 × 10−2 | 1.14 × 10−1 |
Cd | 1.00 × 10−3 | 1.79 × 10−3 | 1.07 × 10−7 | 4.95 × 10−8 | 4.01 × 10−4 | 5.03 × 10−4 | 1.41 × 10−3 | 2.30 × 10−3 | |
Co | 1.00 × 10−3 | 1.79 × 10−3 | 3.75 × 10−4 | 1.73 ×10−4 | 5.00 × 10−6 | 6.27 × 10−6 | 1.38 × 10−3 | 1.97 × 10−3 | |
Cr | 2.23 × 10−2 | 3.99 × 10−2 | 2.50 × 10−4 | 1.15 × 10−4 | 4.46 × 10−3 | 5.59 × 10−3 | 2.70 × 10−2 | 4.56 × 10−2 | |
Cu | 7.83 × 10−4 | 1.40 × 10−3 | 8.35 × 10−8 | 3.86 × 10−8 | 1.04 × 10−5 | 1.31 × 10−5 | 7.94 × 10−4 | 1.41 × 10−3 | |
Mn | 1.93 × 10−2 | 3.44 × 10−2 | 6.61 × 10−3 | 3.05 × 10−3 | 1.92 × 10−3 | 2.41 × 10−3 | 2.78 × 10−2 | 3.99 × 10−2 | |
Ni | 1.72 × 10−2 | 3.07 × 10−3 | 1.78 × 10−7 | 8.21 × 10−8 | 2.54 × 10−5 | 3.18 × 10−5 | 1.74 × 10−3 | 3.10 × 10−3 | |
Pb | 1.01 × 10−2 | 1.81 × 10−2 | 1.07 × 10−6 | 4.96 × 10−7 | 2.69 × 10−4 | 3.37 × 10−4 | 1.04 × 10−2 | 1.84 × 10−2 | |
Zn | 3.43 × 10−4 | 6.13 × 10−4 | 3.66 × 10−8 | 1.69 × 10−8 | 6.84 × 10−6 | 8.58 × 10−6 | 3.50 × 10−4 | 6.21 × 10−4 | |
Carcinogenic | As | 9.90 × 10−6 | 1.77 × 10−5 | 2.58 × 10−9 | 1.19 × 10−9 | 3.95 × 10−8 | 4.95 × 10−8 | 9.94 × 10−6 | 1.77 × 10−5 |
Cd | 2.13 × 10−6 | 3.80 × 10−6 | 6.70 × 10−4 | 3.09 × 10−14 | 8.49 × 10−9 | 1.06 × 10−8 | 2.14 × 10−6 | 3.81 × 10−6 | |
Co | — | — | 7.28 × 10−9 | 3.36 × 10−9 | — | — | 7.28 × 10−9 | 3.36 × 10−9 | |
Cr | 1.16 × 10−5 | 2.08 × 10−5 | 1.04 × 10−7 | 4.81 × 10−8 | 1.86 × 10−6 | 2.33 × 10−6 | 1.36 × 10−5 | 2.32 × 10−5 | |
Ni | — | — | 1.27 × 10−9 | 5.87 × 10−10 | — | — | 1.27 × 10−9 | 5.87 × 10−10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, P.; Shao, T.; Wang, R.; Chen, Z.; Zhang, Z.; Xu, Z.; Zhu, Y.; Li, D.; Fu, L.; Wang, F. A Study on Heavy Metals in the Surface Soil of the Region around the Qinghai Lake in Tibet Plateau: Pollution Risk Evaluation and Pollution Source Analysis. Water 2020, 12, 3277. https://doi.org/10.3390/w12113277
Wei P, Shao T, Wang R, Chen Z, Zhang Z, Xu Z, Zhu Y, Li D, Fu L, Wang F. A Study on Heavy Metals in the Surface Soil of the Region around the Qinghai Lake in Tibet Plateau: Pollution Risk Evaluation and Pollution Source Analysis. Water. 2020; 12(11):3277. https://doi.org/10.3390/w12113277
Chicago/Turabian StyleWei, Peiru, Tianjie Shao, Ruojin Wang, Zongyan Chen, Zhongdi Zhang, Zhiping Xu, Yadi Zhu, Dongze Li, Lijuan Fu, and Feier Wang. 2020. "A Study on Heavy Metals in the Surface Soil of the Region around the Qinghai Lake in Tibet Plateau: Pollution Risk Evaluation and Pollution Source Analysis" Water 12, no. 11: 3277. https://doi.org/10.3390/w12113277
APA StyleWei, P., Shao, T., Wang, R., Chen, Z., Zhang, Z., Xu, Z., Zhu, Y., Li, D., Fu, L., & Wang, F. (2020). A Study on Heavy Metals in the Surface Soil of the Region around the Qinghai Lake in Tibet Plateau: Pollution Risk Evaluation and Pollution Source Analysis. Water, 12(11), 3277. https://doi.org/10.3390/w12113277