Study of Water Productivity of Industrial Hemp under Hot and Dry Conditions in Brandenburg (Germany) in the Year 2018
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Measurements
2.2.1. Leaf Area Index and Yield
2.2.2. Soil Moisture
2.2.3. Weather
2.2.4. Gas Exchange Measurement
2.2.5. Throughfall
2.3. Calculations
2.3.1. Hydrological Variables
2.3.2. Water Productivity of the Hemp
2.3.3. Statistical Analyses
2.3.4. Sources of Uncertainty
3. Results and Discussion
3.1. Leaf Area Index and Yield
3.2. Hydrological Variables for the Vegetation Period of Hemp
3.2.1. Soil Moisture Measurements
3.2.2. Water Fluxes for Seven Measured Precipitation Events
Precipitation Events and Throughfall
Evaporation of Intercepted Water
3.2.3. Measured and Calculated Water Fluxes
Hourly Measured Precipitation and Throughfall
Evaporation of Intercepted Water
Measured Transpiration
3.2.4. Modeled Water Fluxes
Parametrization of the AgroHyd Farmmodel
Performance of the Model
Modeled Transpiration
3.3. Uncertainties and Water Budget
3.4. Water Productivity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Parameter | VWC [%] | SWS 0–2 m [mm] |
---|---|---|
permanent wilting point (soil water content at pF 4.2 i.e., Ψsoil = −1.6 MPa) | 8.2 ± 0.5 | 236 |
field capacity (soil water content at pF 1.8 i.e., Ψsoil = −0.01 MPa) | 26.5 ± 0.7 | 763 |
water retention capacity (pF 1.8–pF 4.2) | 18.3 ± 1.0 | 527 |
MAP | MPV | MAT | WAT | |
---|---|---|---|---|
[mm a−1] | [mm period−1] | [°C] | [m s−1] | |
mean (±standard deviation) | 579 (±108) | 284 (±81) | 9.7 (±0.7) | 4.3 (±0.4) |
2018 | 346 | 128 | 11.3 | 4.1 |
Model Evaluation Statistics | ‘Santhica’− | ‘Santhica’+ | ‘Ivory’- | ‘Ivory’+ | |
---|---|---|---|---|---|
Standard regression | Slope | 1.5 | 0.61 | 1.24 | 1.00 |
y-intercept | 2.68 | 2.12 | 1.05 | −0.38 | |
Pearson’s correlation coefficient (r) | 0.88 | 0.80 | 0.92 | 0.90 | |
Coefficient of determination (R2) | 0.77 | 0.63 | 0.84 | 0.81 | |
Dimen-sionless | Nash-Sutcliffe efficiency (NSE) | −4.61 | 0.63 | −0.01 | 0.74 |
Logarithmic transformed NSE (NSElog) | −0.26 | 0.63 | 0.15 | 0.56 | |
Error index | Root mean square error (RMSE) | 4.11 | 2.34 | 1.89 | 1.17 |
Percent bias (PBIAS) | 63.54 | −4.39 | 43.12 | −10.76 | |
Standard error (SET) | 0.38 | 0.45 | 0.31 | 0.31 |
Affected Value | Cultivar | Mean | Method/Reason for Neglecting | ||
---|---|---|---|---|---|
Santhica 27 | Ivory | ||||
Error [%] | |||||
Natural randomness | |||||
XN,P | P | 4 | 4 | CVP | |
XN,TF | TF | 1 | 4 | CVTF | |
Input data | |||||
XI,P | P | <2 | <2 | Assumed measurement error | |
XI,TF | TF | 20 | 20 | SE assumed in relation to the nomogram of [27] | |
XI,Y | FMwhole plant | 42 | 44 | CVY | |
DMwhole plant | 35 | 39 | |||
FMbast | 41 | 46 | |||
DMbast | 31 | 41 | |||
Model parameters, model structure | |||||
XM,T | T | 45 | 31 | SDT |
Santhica 27 | Ivory | Mean | |||
---|---|---|---|---|---|
Winput | Tcrop + fallow + Wirri | m3 m−2 | |||
Max | 1.01 | 0.61 | 0.81 | ||
Min | 0.39 | 0.33 | 0.36 | ||
Output | FMwhole plant | kg m−2 | |||
Max | 2.48 | 3.49 | 2.99 | ||
Min | 1.00 | 1.42 | 1.21 | ||
Output | DMwhole plant | kg m−2 | |||
max | 1.72 | 2.52 | 2.12 | ||
min | 0.70 | 1.06 | 0.88 | ||
Output | FMbast | kg m−2 | |||
Max | 0.63 | 0.89 | 0.76 | ||
Min | 0.26 | 0.38 | 0.32 | ||
Output | DMbast | kg m−2 | |||
Max | 0.24 | 0.36 | 0.30 | ||
Min | 0.12 | 0.19 | 0.16 |
References
- Amaducci, S.; Gusovius, H.-J. Hemp–cultivation, extraction and processing. In Industrial Applications of Natural Fibres: Structure, Properties and Technical Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; pp. 109–134. [Google Scholar] [CrossRef]
- Fernando, A.L.; Duarte, M.P.; Vatsanidou, A.; Alexopoulou, E. Environmental aspects of fiber crops cultivation and use. Ind. Crop. Prod. 2015, 68, 105–115. [Google Scholar] [CrossRef]
- Tang, K.; Struik, P.C.; Amaducci, S.; Stomph, T.-J.; Yin, X. Hemp (Cannabis sativa L.) leaf photosynthesis in relation to nitrogen content and temperature: Implications for hemp as a bio-economically sustainable crop. GCB Bioenergy 2017, 9, 1573–1587. [Google Scholar] [CrossRef]
- Herer, J.; Bröckers, M. Die Wiederentdeckung der Nutzpflanze Hanf, Cannabis Marihuana: Mit einer Kurzstudie von Katalyse-Institut für Angewandte Umweltforschung eV; Zweitausendeins: Frankfurt am Main, Germany, 1994; ISBN 3861500590. [Google Scholar]
- Bócsa, I.; Karus, M.; Lohmeyer, D. Der Hanfanbau: Botanik, Sorten, Anbau und Ernte, Märkte und Produktlinien; Landwirtschaftsverlag: Münster-Hiltrup, Germany, 2000. [Google Scholar]
- Gedik, G.; Avinc, O. Hemp Fiber as a Sustainable Raw Material Source for Textile Industry: Can We Use Its Potential for More Eco-Friendly Production? In Sustainability in the Textile and Apparel Industries. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry; Muthu, S., Gardetti, M., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Barth, M.; Carus, M. Carbon Footprint and Sustainability of Different Natural Fibres for Biocomposites and Insulation Material; Nova-Institute: Hürth, Germany, 2015; Available online: http://news.bio-based.eu/media/2015/04/15-04-20_PR_Carbon-Footprint-of-Natural-Fibres_nova.pdf (accessed on 29 January 2020).
- Cherrett, N.; Barrett, J.; Clemett, A.; Chadwick, M.; Chadwick, M.J. Ecological Footprint and Water Analysis of Cotton, Hemp and Polyester; Stockholm Environmental Institute: Stockholm, Sweden, 2005; Available online: https://mediamanager.sei.org/documents/Publications/SEI-Report-EcologicalFootprintAndWaterAnalysisOfCottonHempAndPolyester-2005.pdf (accessed on 27 March 2020).
- Struik, P.; Amaducci, S.; Bullard, M.; Stutterheim, N.; Venturi, G.; Cromack, H. Agronomy of fibre hemp (Cannabis sativa L.) in Europe. Ind. Crop. Prod. 2000, 11, 107–118. [Google Scholar] [CrossRef]
- Tang, K.; Struik, P.; Yin, X.; Thouminot, C.; Bjelková, M.; Stramkale, V.; Amaducci, S. Comparing hemp (Cannabis sativa L.) cultivars for dual-purpose production under contrasting environments. Ind. Crop. Prod. 2016, 87, 33–44. [Google Scholar] [CrossRef]
- Tang, K.; Struik, P.; Yin, X.; Calzolari, D.; Musio, S.; Thouminot, C.; Bjelková, M.; Stramkale, V.; Magagnini, G.; Amaducci, S. A comprehensive study of planting density and nitrogen fertilization effect on dual-purpose hemp (Cannabis sativa L.) cultivation. Ind. Crop. Prod. 2017, 107, 427–438. [Google Scholar] [CrossRef]
- Bócsa, I.; Karus, M. The Cultivation of Hemp: Botany, Varieties, Cultivation and Harvesting; Hemptech: Sebastopol, CA, USA, 1998; ISBN 1886874034. [Google Scholar]
- Bouloc, P.; van der Werf, H.M.G. The role of hemp in sustainable development. In Hemp: Industrial Production and Uses; Bouloc, P., Allegret, S., Arnaud, L., Eds.; CABI eBook: Wallingford, Oxfordshire, UK, 2013; pp. 278–289. [Google Scholar] [CrossRef]
- Tang, K.; Fracasso, A.; Struik, P.C.; Yin, X.; Amaducci, S. Water- and nitrogen-use efficiencies of hemp (Cannabis sativa L.) based on whole-canopy measurements and modeling. Front. Plant Sci. 2018, 9, 951. [Google Scholar] [CrossRef] [Green Version]
- Averink, J. Global Water Footprint of Industrial Hemp Textile; University of Twente: Enschede, The Netherlands, 2015; Available online: https://essay.utwente.nl/68219/1/Averink%2C%20J.%200198501%20openbaar.pdf (accessed on 27 March 2020).
- Molden, D. Accounting for Water Use and Productivity; No. 42; IWMI: Colombo, Sri Lanka, 1997; Available online: http://www.iwmi.cgiar.org/Publications/SWIM_Papers/PDFs/SWIM01.PDF (accessed on 22 October 2020).
- Kozak, J.A.; Ahuja, L.R.; Green, T.R.; Ma, L. Modelling crop canopy and residue rainfall interception effects on soil hydrological components for semi-arid agriculture. Hydrol. Process. Int. J. 2007, 21, 229–241. [Google Scholar] [CrossRef]
- Drastig, K.; Quiñones, T.S.; Zare, M.; Dammer, K.-H.; Prochnow, A. Rainfall interception by winter rapeseed in Brandenburg (Germany) under various nitrogen fertilization treatments. Agric. For. Meteorol. 2019, 268, 308–317. [Google Scholar] [CrossRef]
- Baroni, G.; Drastig, K.; Lichtenfeld, A.U.; Jost, L.; Claas, P. Assessment of irrigation scheduling systems in Germany: Survey of the users and comparative study. Irrig. Drain. 2019, 68, 520–530. [Google Scholar] [CrossRef]
- LBGR, Landesamt für Bergbau, Geologie und Rohstoffe Brandenburg. 2019. Available online: http://www.geo.brandenburg.de/boden (accessed on 23 July 2020).
- Trost, B. Site Description Research Site Marquardt Fieldlab for Digital Agriculture, Leibniz-Institut fur Agrartechnik und Biookonomie e.V. (ATB). 2018. Available online: https://www.atb-potsdam.de/en/institute/about-us/research-infrastructure/research-sites/equipment-and-site---description.html (accessed on 27 March 2020).
- Herppich, W.; Gusovius, H.; Flemming, I.; Drastig, K. Effects of drought and heat on photosynthetic performance, water use and yield of two important fibre hemp cultivars at a poor-soil site in Brandenburg (Germany). Agronomy 2020, 10, 1361. Available online: https://www.mdpi.com/2073-4395/10/9/1361 (accessed on 22 October 2020). [CrossRef]
- Solomon, R.W. Free and open source software for the manipulation of digital images. Am. J. Roentgenol. 2009, 192, W330–W334. [Google Scholar] [CrossRef]
- Köstner, B.; Surke, M.; Bernhofer, C. Klimadiagnose der Region Berlin/Barnim/Uckermark/Uecker-Randow für den Zeitraum 1951 bis 2006. 2007. Available online: https://www.researchgate.net/publication/44175675_Klimadiagnose_der_Region_Berlin_Barnim_Uckermark_Uecker-Randow_fur_den_Zeitraum_1951_bis_2006 (accessed on 22 October 2020).
- Von Caemmerer, S.; Farquhar, G.D. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 1981, 153, 376–387. [Google Scholar] [CrossRef] [PubMed]
- Matyssek, R.; Herppich, W.B. Physikalische Grundlagen von Transpiration, CO2-Aufnahme, Gasleitfähigkeiten und deren Bestimmungen. In Experimentelle Pflanzenökologie. Springer Reference Naturwissenschaften; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–30. [Google Scholar] [CrossRef]
- Lloyd, C. Spatial variability of throughfall and stemflow measurements in Amazonian rainforest. Agric. For. Meteorol. 1988, 42, 63–73. [Google Scholar] [CrossRef]
- Drastig, K.; Prochnow, A.; Kraatz, S.; Libra, J.; Krauß, M.; Döring, K.; Müller, D.; Hunstock, U. Modeling the Water Demand on Farms. 2012. Available online: https://oar.tib.eu/jspui/bitstream/123456789/701/1/adgeo-32-9-2012.pdf (accessed on 22 October 2020).
- Allen, R.; Pereira, L.; Raes, D.; Smith, M. Crop evapotranspiration—Guidelines for computing crop water requirements. In FAO Irrigation and Drainage Paper 56; FAO—Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; 297p. [Google Scholar]
- Kutschera, L.; Lichtenegger, E.; Sobotik, M. Wurzelatlas der Kulturpflanzen Gemäßigter Gebiete mit Arten des Feldgemüsebaues; DLG-Verlag: Frankfurt am Main, Germany, 2009; ISBN 978-3-7690-0851-7s. [Google Scholar]
- Prochnow, A.; Drastig, K.; Klauss, H.; Berg, W. Water use indicators at farm scale: Methodology and case study. Food Energy Secur. 2012, 1, 29–46. [Google Scholar] [CrossRef]
- Doering, K.; Kraatz, S.; Prochnow, A.; Drastig, K. Indirect water demand of dairy farm buildings. Agric. Eng. Inter. CIGR J. 2013, 15, 16–22. Available online: https://cigrjournal.org/index.php/Ejounral/article/view/2726/1790 (accessed on 22 October 2020).
- Maidment, D.R. Handbook of Hydrology; McGraw-Hill: New York, NY, USA, 1993; Volume 9780070, ISBN 9780070397323. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Ellis, J.; Kebreab, E.; Odongo, N.; McBride, B.; Okine, E.; France, J. Prediction of methane production from dairy and beef cattle. J. Dairy Sci. 2007, 90, 3456–3466. [Google Scholar] [CrossRef]
- Tedeschi, L.O. Assessment of the adequacy of mathematical models. Agric. Syst. 2006, 89, 225–247. [Google Scholar] [CrossRef]
- Michelson, D.B. Systematic correction of precipitation gauge observations using analyzed meteorological variables. J. Hydrol. 2004, 290, 161–177. [Google Scholar] [CrossRef]
- Amaducci, S.; Amaducci, M.T.; Benati, R.; Venturi, G. Crop yield and quality parameters of four annual fibre crops (hemp, kenaf, maize and sorghum) in the North of Italy. Ind. Crop. Prod. 2000, 11, 179–186. [Google Scholar] [CrossRef]
- Willmott, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
- Santhi, C.; Arnold, J.G.; Williams, J.R.; Dugas, W.A.; Srinivasan, R.; Hauck, L.M. Validation of the SWAT model on a large river basin with point and nonpoint sources 1. JAWRA J. Am. Water Resour. Assoc. 2001, 37, 1169–1188. [Google Scholar] [CrossRef]
- Van Liew, M.; Arnold, J.; Garbrecht, J. Hydrologic simulation on agricultural watersheds: Choosing between two models. Trans. ASAE 2003, 46, 1539–1551. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Melching, C.S. Reliability estimation. In Computer Models of Watershed Hydrology; Water Resources Publications: Highlands Ranch, CO, USA, 1995; Chapter 3. [Google Scholar]
- FAOSTAT. Food and Agriculture Organization of the United Nations; Statistics Division; FAO: Rome, Italy, 2015; Available online: http://faostat3.fao.org/download/Q/QC/E (accessed on 23 July 2020).
- Perović, D.; Crawley, B.; Hume, I.; Hoogers, R.; Sun, D.; Uddinie, J.; Regan, P. Benchmarking Water Productivity of Australian Irrigated Cotton. Primefact 1705; NSW Department of Primary Industries: State of New South Wales, Parramatta NSW, Australia, 2019. Available online: https://www.dpi.nsw.gov.au/agriculture/irrigation/irrigation/irrigation-primefacts/benchmarking-water-productivity-of-australian-cotton-primefact (accessed on 27 March 2020).
- Shareef, M.; Gui, D.; Zeng, F.; Waqas, M.; Zhang, B.; Iqbal, H. Water productivity, growth, and physiological assessment of deficit irrigated cotton on hyperarid desert-oases in northwest China. Agric. Water Manag. 2018, 206, 1–10. [Google Scholar] [CrossRef]
- Neuer, H.; Prieger, E.; Sengbusch, R.V. Hanfzüchtung. Der Züchter 1946, 17, 33–39. [Google Scholar] [CrossRef]
Santhica 27 | Ivory | |
---|---|---|
Plant densitystart growing period plants m−2 | 149 | 60 |
Plant densityharvest plants m−2 | 79 | 43 |
FMwhole plant t ha−1 | 24.5 ± 10.3 | 14.4 ± 6.3 |
DMwhole plant t ha−1 | 17.9 ± 6.3 | 10.0 ± 3.9 |
FMbast t ha−1 | 6.3 ± 2.6 | 4.2 ± 1.9 |
DMbast t ha−1 | 2.8 ± 0.8 | 2.1 ± 0.9 |
Cultivar | |||
---|---|---|---|
Santhica 27 | Ivory | Mean | |
P [mm] | 44 ± 2 | 44 ± 2 | 44 ± 2 |
TF [mm] | 15 ± 1 | 11 ± 4 | 13 ± 3 |
TF [% of P] | 34 | 26 | 30% |
I [mm] | 29 ± 1 | 33 ± 3 | 31 ± 2 |
I [% of P] | 66 | 77 | 71 |
LAI | 5.8 ± 2.5 | 3.4 ± 2.2 | 4.6 ± 2.4 |
Santhica 27 | Ivory | ||
---|---|---|---|
Mean | 5.90 ± 3.11 | 3.56 ± 2.64 | |
daily transpiration (T) [mm] | Max | 11.63 | 10.30 |
Min | 1.03 | 0.47 | |
Mean | 5.90 ± 3.11 | 3.56 ± 2.64 | |
Max | 11.63 | 10.30 |
Cultivar | Santhica 27 | Ivory | Fallow | ||||
---|---|---|---|---|---|---|---|
Phase | Initial | Mid- Season | Late Season | Initial | Mid- Season | Late Season | - |
Start day | 1 | 77 | 91 | 1 | 59 | 80 | 1 |
End day | 76 | 90 | 138 | 58 | 79 | 120 | 224 (Santhica) 242 (Ivory) |
p (−) | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.55 |
Zr (m) | 2.5 | 2.5 | 0.3 | ||||
Height (m) | 2.049 | 1.585 | 0.3 | ||||
Kcb (−) | 0.3 | 1.82 | 0.62 | 0.54 | 1.11 | 0.43 | 0.15 |
LAI (m2 m−2) | 8.8 | 7.6 | 0.2 | ||||
Vegetation period | 04/05/18–09/09/18 | 22/05/18–09/09/18 | 22/09/2017–05/2018 |
Santhica 27 | Ivory | |
---|---|---|
Mean | 6.64 ± 3.35 | 4.14 ± 1.93 |
Max | 14.54 | 7.86 |
Min | 0.94 | 0.59 |
Cultivar | ||
---|---|---|
Santhica 27 | Ivory | |
Pfallow [mm] | 243 | 243 |
Tfallow [mm] | 31 | 31 |
Pcrop [mm] | 44 | 44 |
Tcrop [mm] | 633 | 398 |
Hydrologic Variables | Cultivar | Mean | ||
---|---|---|---|---|
Santhica 27 | Ivory | |||
P | (mm) | |||
max | 46 | |||
min | 41 | |||
TF | (mm) | |||
max | 19 | 18 | 19 | |
min | 14 | 8 | 11 | |
I | (mm) | |||
max [Imax = Pmax−TFmin] | 33 | 39 | 36 | |
min [Imin = Pmin−TFmax] | 22 | 23 | 22 | |
I | (% of P) | |||
max [Imax = Imax/Pmax] | 70% | 84% | 77% | |
min [Imax = Imin/Pmin] | 47% | 49% | 48% | |
T | (mm) | |||
Max | 914 | 521 | 717 | |
Min | 347 | 274 | 311 | |
T | (% of P) | |||
Max | 1978% | 1127% | 1552% | |
Min | 750% | 593% | 672% |
Santhica 27 | Ivory | ||
---|---|---|---|
WPFMwhole plant | 3.49 | 3.07 | |
WP [kg m−3] | WPDMwhole plant | 2.55 | 2.14 |
WPFM bast | 0.90 | 0.89 | |
WPDM bast | 0.39 | 0.45 |
WP [kg m−3] | Santhica 27 | Ivory | Mean | |
---|---|---|---|---|
FMwhole plant | max [WPmax = Output max/Winput min] | 6.36 | 10.65 | 8.32 |
FMwhole plant | min [WPmin = Output min/Winput max] | 0.99 | 2.31 | 1.49 |
DMwhole plant | max [WPmax = Output max/Winput min] | 4.41 | 7.70 | 5.91 |
DMwhole plant | min [WPmin = Output min/Winput max] | 0.69 | 1.74 | 1.09 |
FMbast | max [WPmax = Output max/Winput min] | 1.62 | 2.72 | 2.12 |
FMbast | min [WPmin = Output min/Winput max] | 0.25 | 0.61 | 0.39 |
DMbast | max [WPmax = Output max/Winput min] | 0.61 | 1.10 | 0.83 |
DMbast | min [WPmin = Output min/Winput max] | 0.12 | 0.31 | 0.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drastig, K.; Flemming, I.; Gusovius, H.-J.; Herppich, W.B. Study of Water Productivity of Industrial Hemp under Hot and Dry Conditions in Brandenburg (Germany) in the Year 2018. Water 2020, 12, 2982. https://doi.org/10.3390/w12112982
Drastig K, Flemming I, Gusovius H-J, Herppich WB. Study of Water Productivity of Industrial Hemp under Hot and Dry Conditions in Brandenburg (Germany) in the Year 2018. Water. 2020; 12(11):2982. https://doi.org/10.3390/w12112982
Chicago/Turabian StyleDrastig, Katrin, Inken Flemming, Hans-Jörg Gusovius, and Werner B. Herppich. 2020. "Study of Water Productivity of Industrial Hemp under Hot and Dry Conditions in Brandenburg (Germany) in the Year 2018" Water 12, no. 11: 2982. https://doi.org/10.3390/w12112982
APA StyleDrastig, K., Flemming, I., Gusovius, H.-J., & Herppich, W. B. (2020). Study of Water Productivity of Industrial Hemp under Hot and Dry Conditions in Brandenburg (Germany) in the Year 2018. Water, 12(11), 2982. https://doi.org/10.3390/w12112982