Quantitative Detection and Attribution of Groundwater Level Variations in the Amu Darya Delta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.3. Methods
2.3.1. Trend Analysis
2.3.2. Wavelet Analysis
2.3.3. Non-Parametric Mann–Kendall Test
2.3.4. Pearson Correlation Analysis
2.3.5. Principal Component Analysis
3. Results
3.1. Spatial-Temporal Variation of Groundwater Level
3.2. Periodic Analysis of Groundwater Level
3.3. Mutation Analysis
3.4. Pearson Correlation Analysis of Groundwater
3.5. Principal Component Analysis
4. Discussion
4.1. Spatial-Temporal Characteristics of Groundwater Level in the Amu Darya Delta
4.2. Attribution Analysis of Groundwater Spatial-Temporal Changes
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Burr, G.S.; Kuzmin, Y.V.; Krivonogov, S.K.; Gusskov, S.A.; Cruz, R.J. A history of the modern Aral Sea (Central Asia) since the Late Pleistocene. Quat. Sci. Rev. 2019, 206, 141–149. [Google Scholar] [CrossRef]
- Schettler, G.; Oberhänsli, H.; Hahne, K. Ra-226 and Rn-222 in saline water compartments of the Aral Sea region. Appl. Geochem. 2015, 58, 106–122. [Google Scholar] [CrossRef]
- Micklin, P. The future Aral Sea: Hope and despair. Environ. Earth Sci. 2016, 75, 844. [Google Scholar] [CrossRef]
- Micklin, P. Desiccation of the Aral Sea: A Water Management Disaster in the Soviet Union. Science 1988, 241, 170–1176. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Huang, H.P.; Zavialov, P.; Khan, V. Impact of Desiccation of Aral Sea on the Regional Climate of Central Asia Using WRF Model. Pure Appl. Geophys. 2018, 175, 465–478. [Google Scholar] [CrossRef]
- Micklin, P. The past, present, and future Aral Sea. Lakes Reserv. Res. Manag. 2010, 15, 193–213. [Google Scholar] [CrossRef]
- Ibrakhimov, M.; Khamzina, A.; Forkutsa, I.; Paluasheva, G.; Lamers, J.P.A.; Tischbein, B.; Vlek, P.L.G.; Martius, C. Groundwater table and salinity: Spatial and temporal distribution and influence on soil salinization in Khorezm region (Uzbekistan, Aral Sea Basin). Irrig. Drain. Syst. 2007, 21, 219–236. [Google Scholar] [CrossRef]
- Guo, H.; Bao, A.; Liu, T.; Jiapaer, G.; Ndayisaba, F.; Jiang, L.; Kurban, A.; De Maeyer, P. Spatial and temporal characteristics of droughts in Central Asia during 1966–2015. Sci. Total Environ. 2018, 624, 1523–1538. [Google Scholar] [CrossRef]
- Alekseeva, I.; Jarsjö, J.; Schrum, C.; Destouni, G. Reproducing the Aral Sea water budget and sea-groundwater dynamics between 1979 and 1993 using a coupled 3-D sea-ice-groundwater model. J. Mar. Syst. 2009, 76, 296–309. [Google Scholar] [CrossRef]
- Long, A.; Deng, M.; Xie, L.; Li, X.; Wang, J.; Su, H.; Wu, S. Exploring analysis on the adaptive countermeasures to water resources evolvement under the climate change in Xinjiang and Aral Sea Basin. Arid Land Geogr. 2012, 35, 377–387. [Google Scholar]
- Li, X.; Zhang, C.; Huo, Z. Optimizing irrigation and drainage by considering agricultural hydrological process in arid farmland with shallow groundwater. J. Hydrol. 2020, 585, 124785. [Google Scholar] [CrossRef]
- Micklin, P. The Aral Sea Disaster. Annu. Rev. Earth Planet. Sci. 2007, 35, 47–72. [Google Scholar] [CrossRef] [Green Version]
- Vitola, I.; Vircavs, V.; Abramenko, K.; Lauva, D.; Veinbergs, A. Precipitation and air temperature impact on seasonal variations of groundwater levels. Environ. Clim. Technol. 2012, 10, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.; Choi, Y.; Le, T.H.; Shin, S.; Kwon, D. Groundwater levels estimation and forecasting by integrating precipitation-based period-dividing algorithm and response surface methodology. Desalin. Water Treat. 2015, 54, 1270–1280. [Google Scholar] [CrossRef]
- Eshtawi, T.; Evers, M.; Tischbein, B. Quantifying the impact of urban area expansion on groundwater recharge and surface runoff. Hydrol. Sci. J. 2016, 61, 826–843. [Google Scholar] [CrossRef]
- Eshtawi, T.; Evers, M.; Tischbein, B. Potential impacts of urban area expansion on groundwater level in the Gaza Strip: A spatial-temporal assessment. Arab. J. Geosci. 2015, 8, 10565–10584. [Google Scholar] [CrossRef]
- Siebert, S.; Burke, J.; Faures, J.M.; Frenken, K.; Hoogeveen, J.; Döll, P.; Portmann, F.T. Groundwater use for irrigation—A global inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [Google Scholar] [CrossRef] [Green Version]
- Johansson, O.; Aimbetov, I.; Jarsjö, J. Variation of groundwater salinity in the partially irrigated Amudarya River delta, Uzbekistan. J. Mar. Syst. 2009, 76, 287–295. [Google Scholar] [CrossRef]
- Jarsjö, J.; Destouni, G. Groundwater discharge into the Aral Sea after 1960. J. Mar. Syst. 2004, 47, 109–120. [Google Scholar] [CrossRef]
- Ahmadi, S.H.; Sedghamiz, A. Geostatistical analysis of spatial and temporal variations of groundwater level. Environ. Monit. Assess. 2007, 129, 277–294. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Luo, M.; Jiapaer, G.; Guo, H.; Guo, H.; Zhang, P.; Meng, F.; Liu, T. Spatial-temporal Variation of Growing-season NDVI and Its Responses to Hydrothermal Condition in the Tarim River Basin from 2000 to 2013. J. Nat. Resour. 2017, 32, 50–63. [Google Scholar]
- Liu, Z.; Huang, Y.; Liu, T.; Li, J.; Xing, W.; Akmalov, S.; Peng, J.; Pan, X.; Guo, C.; Duan, Y. Water Balance Analysis Based on a Quantitative Evapotranspiration Inversion in the Nukus Irrigation Area, Lower Amu River Basin. Remote Sens. 2020, 12, 2317. [Google Scholar] [CrossRef]
- Allen, R.; Irmak, A.; Trezza, R.; Hendrickx, J.M.H.; Bastiaanssen, W.; Kjaersgaard, J. Satellite-based ET estimation in agriculture using SEBAL and METRIC. Hydrol. Process. 2011, 25, 4011–4027. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Niu, J.; Hu, B.X.; Soltanian, M.R.; Qiu, H.; Yang, L. Prediction of groundwater level in seashore reclaimed land using wavelet and artificial neural network-based hybrid model. J. Hydrol. 2019, 577, 123948. [Google Scholar] [CrossRef]
- Chernick, M.R. Wavelet Methods for Time Series Analysis. Technometrics 2001, 43, 491. [Google Scholar] [CrossRef]
- Labat, D. Cross wavelet analyses of annual continental freshwater discharge and selected climate indices. J. Hydrol. 2010, 385, 269–278. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Menezes, J.M.P.; Barreto, G.A. Long-term time series prediction with the NARX network: An empirical evaluation. Neurocomputing 2008, 71, 3335–3343. [Google Scholar] [CrossRef]
- Meng, F.; Liu, T.; Huang, Y.; Luo, M.; Bao, A.; Hou, D. Quantitative detection and attribution of runoff variations in the Aksu River Basin. Water 2016, 8, 338. [Google Scholar] [CrossRef] [Green Version]
- Bevan, J.M.; Kendall, M.G. Rank Correlation Methods. Statistician 1971, 20, 74. [Google Scholar] [CrossRef]
- Pearson, K. Mathematical contributions to the theory of evolution. Proc. R. Soc. 1896, 60, 489–498. [Google Scholar]
- Brenneman, W.A. Statistics for Research. Technometrics 2005, 47, 100. [Google Scholar] [CrossRef]
- Huang, G.; Sun, J.; Zhang, Y.; Chen, Z.; Liu, F. Impact of anthropogenic and natural processes on the evolution of groundwater chemistry in a rapidly urbanized coastal area, South China. Sci. Total Environ. 2013, 463–464, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Liang, K.Y.; Zeger, S.L. Longitudinal data analysis using generalized linear models. Biometrika 1986, 73, 13–22. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, F.; Dai, H.; Hu, B.X.; Qin, G.; Li, D.; Lv, X.; Dai, Z.; Soltanian, M.R. Influence of lunar semidiurnal tides on groundwater dynamics in estuarine aquifers. Hydrogeol. J. 2020, 28, 1419–1429. [Google Scholar] [CrossRef]
- Salam, R.; Towfiqul Islam, A.R.M.; Islam, S. Spatiotemporal distribution and prediction of groundwater level linked to ENSO teleconnection indices in the northwestern region of Bangladesh. Environ. Dev. Sustain. 2020, 22, 4509–4535. [Google Scholar] [CrossRef]
- Rezaei, A.; Gurdak, J.J. Large-scale climate variability controls on climate, vegetation coverage, lake and groundwater storage in the Lake Urmia watershed using SSA and wavelet analysis. Sci. Total Environ. 2020, 724, 138273. [Google Scholar] [CrossRef]
- Patle, G.T.; Singh, D.K.; Sarangi, A.; Rai, A.; Khanna, M.; Sahoo, R.N. Time series analysis of groundwater levels and projection of future trend. J. Geol. Soc. India 2015, 85, 232–242. [Google Scholar] [CrossRef]
- Pathak, A.A.; Dodamani, B.M. Trend Analysis of Groundwater Levels and Assessment of Regional Groundwater Drought: Ghataprabha River Basin, India. Nat. Resour. Res. 2019, 28, 631–643. [Google Scholar] [CrossRef]
- Bhurtun, P.; Lesven, L.; Ruckebusch, C.; Halkett, C.; Cornard, J.-P.; Billon, G. Understanding the impact of the changes in weather conditions on surface water quality. Sci. Total Environ. 2019, 652, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Wang, J.; Liu, J. Geochemical factors controlling the occurrence of high-fluoride groundwater in the western region of the Ordos basin, northwestern China. Environ. Pollut. 2019, 252, 1154–1162. [Google Scholar] [CrossRef] [PubMed]
- El Alfy, M.; Lashin, A.; Abdalla, F.; Al-Bassam, A. Assessing the hydrogeochemical processes affecting groundwater pollution in arid areas using an integration of geochemical equilibrium and multivariate statistical techniques. Environ. Pollut. 2017, 229, 760–770. [Google Scholar] [CrossRef] [PubMed]
- Gautam, A.; Rai, S.C.; Rai, S.P. Impact of anthropogenic activities on the alluvial aquifers of north-east Punjab, India. Environ. Monit. Assess. 2020, 192, 527. [Google Scholar] [CrossRef] [PubMed]
- Ducci, D.; Della Morte, R.; Mottola, A.; Onorati, G.; Pugliano, G. Evaluating upward trends in groundwater nitrate concentrations: An example in an alluvial plain of the Campania region (Southern Italy). Environ. Earth Sci. 2020, 79, 319. [Google Scholar] [CrossRef]
- Hamidov, A.; Khamidov, M.; Ishchanov, J. Impact of climate change on groundwater management in the northwestern part of Uzbekistan. Agronomy 2020, 10, 1173. [Google Scholar] [CrossRef]
- Deng, M.J.; Long, A.H.; Zhang, Y.; Li, X. Assessment of water resources development and utilization in the five Central Asia countries. Adv. Earth Sci. 2010, 25, 1347–1356. [Google Scholar]
- Karthe, D.; Chalov, S.; Borchardt, D. Water resources and their management in central Asia in the early twenty first century: Status, challenges and future prospects. Environ. Earth Sci. 2015, 73, 487–499. [Google Scholar] [CrossRef]
Factor | Nukus | Muynak | Kungrad | Karauzyak |
---|---|---|---|---|
Upstream runoff | −0.406 * | 0.064 | −0.176 * | −0.236 * |
Irrigation water | −0.583 * | −0.047 | −0.222 * | −0.303 * |
NDVI | −0.581 * | −0.09 | −0.195 * | −0.223 * |
Evapotranspiration | −0.196 | 0.382 | 0.221 | 0.11 |
Aral Sea level | 0.105 | 0.355 * | 0.026 | 0.173 * |
District | Nukus | Muynak | Kungrad | Karauzyak | Chimbay | Ellikkala | Turtkul | Kanlykul | Shamanbay | Takhtakupyr | Khojeili | Beruniy | Amudarya | Kegeyli |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rate (mm/year) | 17.16 | −30.27 | 34.19 | 58.36 | 32.95 | 14.88 | 17.15 | 51.13 | 46.08 | 48.59 | 5.87 | −10.41 | −5.52 | 12.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, X.; Wang, W.; Liu, T.; Huang, Y.; Maeyer, P.D.; Guo, C.; Ling, Y.; Akmalov, S. Quantitative Detection and Attribution of Groundwater Level Variations in the Amu Darya Delta. Water 2020, 12, 2869. https://doi.org/10.3390/w12102869
Pan X, Wang W, Liu T, Huang Y, Maeyer PD, Guo C, Ling Y, Akmalov S. Quantitative Detection and Attribution of Groundwater Level Variations in the Amu Darya Delta. Water. 2020; 12(10):2869. https://doi.org/10.3390/w12102869
Chicago/Turabian StylePan, Xiaohui, Weishi Wang, Tie Liu, Yue Huang, Philippe De Maeyer, Chenyu Guo, Yunan Ling, and Shamshodbek Akmalov. 2020. "Quantitative Detection and Attribution of Groundwater Level Variations in the Amu Darya Delta" Water 12, no. 10: 2869. https://doi.org/10.3390/w12102869
APA StylePan, X., Wang, W., Liu, T., Huang, Y., Maeyer, P. D., Guo, C., Ling, Y., & Akmalov, S. (2020). Quantitative Detection and Attribution of Groundwater Level Variations in the Amu Darya Delta. Water, 12(10), 2869. https://doi.org/10.3390/w12102869