Benefits of Water-Harvesting Systems (Jessour) on Soil Water Retention in Southeast Tunisia
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Description of the Jessour System
3.2. Location of Instrumented Sites (JESR and Gully)
3.3. Experimental Setup
3.4. Calculation of Soil Available Water Content (AWC)
3.5. Calculation of Potential Evapotranspiration (PET) Using the Turc Formula
4. Results
4.1. Characteristics of Soil Layers
4.2. Meteorological Context and Significant Rainfall Events
- -
- 10–12 November 2017: 123.2 mm fell in 38 h, i.e., 3.24 mm/h;
- -
- 20–21 December 2017: 45.0 mm fell in 32 h, i.e., 1.44 mm/h;
- -
- 19 August 2018: 26.7 mm fell in 6 h, i.e., 4.45 mm/h.
4.3. Seasonal Water Content Dynamics in the Jesr and Gully Soil Profiles
4.3.1. Late Summer 2017
4.3.2. Rainfall Events in Autumn and Winter 2017
4.3.3. Dry Season: Spring and Summer
4.3.4. Thunderstorm on 19 August 2018
4.4. Evolution of Potential Evapotranspiration and Available Water Content in the Jesr and in the Gully
4.4.1. Evolution of ET0
4.4.2. Evolution of AWC
5. Discussion
5.1. Role of the Type of Rainfall Event in Activating Jessour
5.2. Benefits of the Jessour System for the Local Water Balance
- -
- First, it concentrated runoff in the Jessour plots, via dams and water collection walls;
- -
- Second, it slowed down surface runoff, created ponds and favored infiltration throughout the soil profile. Jessour could store more water by moistening the whole soil profile.
- -
- Finally, Jessour limited soil drainage, as the succession of dams created a system that was less permeable to longitudinal and lateral subsurface flows and therefore stored more water. Moreover, the terraces behind the Jessour dams created a flat landscape that helped slow down drainage and resulted in a slower drying of the Jesr soil profile in spring than in the gully. The Jesr retained soil moisture longer and preserved higher available water content.
5.3. Benefits of the Jesr for Soil Water Retention with Respect to the Olive Tree Vegetative Cycle
5.4. Olive Tree Rooting Depth and the Depth of Soil Profiles
5.5. Spatial Variability of Soil Content: Planting Density and Distance from the Tree Rooting System
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baduel, A.; Baduel, P. Le pouvoir de l’eau dans le Sud-Tunisien. Revue de l’Occident Musulman et de la Méditerranée 1980, 30, 101–134. [Google Scholar] [CrossRef]
- Field, W.P. World irrigation. Irrig. Drain. Syst. 1990, 4, 91–107. [Google Scholar] [CrossRef]
- Bonvallot, J. Plaidoyer pour les jessour. In L’aridité: Une Contrainte au Développement. Caractérisation, Réponses Biologiques, Stratégies des Sociétés; Le Floc’h, E., Grouzis, M., Cornet, A., Bille, J.-C., Eds.; Didactiques: Paris, France, 1992; pp. 507–517. [Google Scholar]
- Ouessar, M.; Bruggeman, A.; Abdelli, F.; Mohtar, R.H.; Gabriels, D.; Cornelis, W.M. Modelling water-harvesting systems in the arid south of Tunisia using SWAT. Hydrol. Earth Syst. Sci. 2009, 13, 2003–2021. [Google Scholar] [CrossRef] [Green Version]
- Bonvallot, J. Comportement des ouvrages de petite hydraulique dans la région de Médenine (Tunisie du Sud) au cours des pluies exceptionnelles de mars 1979. Cahiers ORSTOM Série Sciences Humaines 1979, 16, 233–249. [Google Scholar]
- Abdelli, F.; Ouessar, M.; Khatteli, H. Méthodologie d’identification des ouvrages existants et des sites potentiels pour les Jessour. Revue des Sciences de l’Eau/J. Water Sci. 2012, 25, 237–254. [Google Scholar] [CrossRef] [Green Version]
- Ben Fraj, T.; Abderrahmen, A.; Ben Ouezdou, H.; Reynard, E.; Milano, M.; Calianno, M.; Fallot, J.-M. Les Jessour dans le Sud-est tunisien: Un système hydro-agricole ancestral dans un milieu aride. In Proceedings of the 29ème Colloque de l’Association Internationale de Climatologie (AIC), Besançon, France, 6–9 July 2016; pp. 193–198. [Google Scholar]
- Bonvallot, J. Tabias et jessour du Sud tunisien: Agriculture dans les zones marginales et parade à l’érosion. Cahiers ORSTOM Série Pédologie 1986, 22, 163–171. [Google Scholar]
- Ben Ouezdou, H.; Mamou, A.; Hassen, M. Code des Eaux et Aménagement Hydraulique au Sud de l’Ifriquya au Moyen Age; CPU: Tunis, Tunisie, 1999. [Google Scholar]
- Ben Ouezdou, H.; Abderrahmen, A.; Abbassi, M.; Ben Fraj, T.; Calianno, M.; Fallot, J.-M.; Milano, M.; Reynard, E. Analyse de l’événement pluviométrique intense du 11 novembre 2017 et ses effets sur le système hydraulique des Jessour (sud-est tunisien). In Proceedings of the 31ème Colloque de l’Association Internationale de Climatologie (AIC), Nice, France, 4–7 July 2018; pp. 251–256. [Google Scholar]
- Ben Ouezdou, H. Les aménagements de petite hydraulique dans le Sud Tunisien, un savoir-faire traditionnel au service du développement durable. In Proceedings of the Séminaire international, Hammamet, Tunis, 23–27 May 2000; pp. 45–54. [Google Scholar]
- Ben Ouezdou, H. De Matmata à Tataouine: Ksour, Jessour et Troglodytes; Simpact Printers: Tunis, Tunisie, 2001. [Google Scholar]
- Ben Ouezdou, H.; Trousset, P. Aménagements hydrauliques dans le Sud-est tunisien. In Proceedings of the Conference Contrôle et Distribution de l’Eau dans le Maghreb Antique et Médiéval, Tunis, Tunisie, 22–25 March 2002; Bridoux, V., Ed.; Ecole Française de Rome: Rome, Italy, 2009; pp. 1–18. [Google Scholar]
- El Amami, S. Les Aménagements Hydrauliques Traditionnels en Tunisie; Centre de Recherche en Génie Rural (CRGR): Tunis, Tunisie, 1984. [Google Scholar]
- Chahbani, B. Contribution à l’étude de la destruction des Jessour dans le sud tunisien. Revue des régions arides 1990, 1, 137–172. [Google Scholar]
- Alaya, K.; Iertmannw, V.; Waibel, T. Les Tabias; Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) et Ministère de l’Agriculture: Tunis, Tunisie, 1993. [Google Scholar]
- Snane, M.H.; Mechergui, M. Cultures pluviales des montagnes arides en Tunisie: Rôle et dimensionnement des Jessour. Science et Changements Planétaires/Sécheresse 1996, 7, 203–208. [Google Scholar]
- Bachagha, N. Evaluation des Techniques de Conservation des Eaux et des Sols dans la Région de Beni Khedache (Micro-bassin versant de Boumenfes). Master’s Thesis, Institut National Agronomique de Tunisie, Tunis, Tunisie, 2013. [Google Scholar]
- Gasmi, I.; Moussa, M.; Rejeb, H. The Jessour: Wise traditional technique for water and soil conservation in southeastern Tunisia (the case of micro-watershed El-Jouabit, Mareth, Gabes). Int. J. Soc. Sci. Manag. 2014, 4, 25–33. [Google Scholar]
- Oweis, T.; Prinz, D.; Hachum, A. Récolte de l’Eau, le Savoir Indigène pour l’Avenir des Environnements Secs; ICARDA: Alep, Syrie, 2001. [Google Scholar]
- Romagny, B.; Guillaume, H.; Ben Ouezdou, H.; Palluault, S. Ressources en Eau, Usages et Concurrences dans la Jeffara Tunisienne; Documents de recherche du LPED; UMR 151 IRD-Université de Provence: Marseille, France, 2004; Volume 1. [Google Scholar]
- Hauser, C. Etude de la Gestion d’un Bassin Versant Comprenant des Technologies de Gestion Durable des Terres. Exemple du Bassin Versant de l’Oued Hallouf en Tunisie. Master’s Thesis, University of Bern, Bern, Switzerland, 2011. [Google Scholar]
- Moussalim, S. Contribution à l’Évaluation des Projets de Développement Rural Local: Le Projet Jessour et Ksour de Béni Khédache. Master’s Thesis, Institut Agronomique Méditerranéen de Montpellier, Montpellier, France, 2009. [Google Scholar]
- Abdelli, F.; Ouessar, M.; Bruggeman, A.; Khatteli, H.; Ghoudi, R.; Guied, M. Mise en place d’un modèle agro-environnemental SWAT sur le bassin versant d’Oued Jir (sud-est tunisien). Revue des régions arides 2014, 33, 109–113. [Google Scholar]
- Abdelli, F.; Ouessar, M.; M’Hemdi, S.; Guied, M.; Khatteli, H. Monitoring Soil Moisture Content of Jessour in the Watershed of Wadi Jir (Matmata, Southeast Tunisia). In Water and Land Security in Drylands: Response to Climate Change; Ouessar, M., Gabriels, D., Tsunekawa, A., Evett, S., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 97–110. [Google Scholar]
- Gupta, S.C.; Larson, W.E. Estimating soil water retention characteristics from particle size distribution, organic matter percent, and bulk density. Water Resour. Res. 1979, 15, 1633–1635. [Google Scholar] [CrossRef]
- Rawls, W.J.; Brakensiek, D.L. Estimation of Soil Water Retention and Hydraulic Properties. In Unsaturated Flow in Hydrologic Modeling: Theory and Practice; Morel-Seytoux, H.J., Ed.; NATO ASI Series; Springer: Dordrecht, The Netherlands, 1989; pp. 275–300. [Google Scholar]
- Fernández, J.E.; Moreno, F. Water use by the olive tree. J. Crop Prod. 1999, 2, 101–162. [Google Scholar] [CrossRef]
- Masmoudi-Charfi, C. Manuel d’Irrigation de l’Olivier; Ministère de l’Agriculture Tunisien, Institution de la Recherche et de l’Enseignement Supérieurs Agricoles: Tunis, Tunisie, 2012. [Google Scholar]
- Fallot, J.-M.; Ben Fraj, T.; Calianno, M.; Abbassi, M.; Ben Ouezdou, H.; Abderrahmen, A.; Milano, M.; Reynard, E. Impact des aménagements hydro-agricoles en Jessour sur le bilan hydrique dans le Sud-Est Tunisien. In Proceedings of the 32ème colloque de l’Association Internationale de Climatologie (AIC), Thessalonique, Greece, 29 May–1 June 2019; pp. 549–554. [Google Scholar]
- Regaya, K. Etude Géologique de la Formation des Limons de Matmata (Sud Tunisien); Revue des Sciences de la Terre INRS: Tunis, Tunisie, 1985; Volume 1. [Google Scholar]
- Coudé-Gaussen, G. Les Poussières Sahariennes et Leur Contribution aux Sédimentations Désertiques et Péridésertiques; Université Pierre et Marie Curie Paris 6: Paris, France, 1989. [Google Scholar]
- Ben Fraj, T. La Jeffara Septentrionale: Étude de l’Évolution Géomorphologique au cours du Quaternaire. Ph.D. Thesis, Faculté des Sciences Humaines et Sociales de Tunis, Tunis, Tunisie, 2012. [Google Scholar]
- Ben Fraj, T. Proposition d’un schéma chronostratigraphique des héritages quaternaires continentaux de la Jeffara septentrionale et de la partie nord-orientale du plateau de Dahar-Matmata (Sud-est tunisien). Quaternaire 2012, 23, 187–204. [Google Scholar] [CrossRef]
- Floret, C.; Pontanier, R. L’aridité en Tunisie Présaharienne: Climat, Sol, Végétation et Aménagement; Orstom: Paris, France, 1982. [Google Scholar]
- Abderrahmen, A. Les Intensités des Pluies dans la Tunisie Orientale. Ph.D. Thesis, Faculté des Sciences Humaines et Sociales de Tunis, Tunis, Tunisie, 2009. [Google Scholar]
- Institut National de la Météorologie. Fiche Climatique de la Station de Médenine 1968–2004; Institut National de la Météorologie: Tunis, Tunisie, 2005. [Google Scholar]
- Institut National de la Météorologie. Fiche Climatique de la Station de Beni Khedache 1990–2004; Institut National de la Météorologie: Tunis, Tunisie, 2005. [Google Scholar]
- Henia, L. Climat et Bilans de l’Eau en Tunisie. Essai de Régionalisation Climatique par les Bilans Hydriques; Publication de l’Université de Tunis: Tunis, Tunisie, 1993. [Google Scholar]
- Dean, T.J.; Bell, J.P.; Baty, A.J.B. Soil moisture measurement by an improved capacitance technique, Part I. Sensor design and performance. J. Hydrol. 1987, 93, 67–78. [Google Scholar] [CrossRef]
- FAO. World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports; FAO: Rome, Italy, 2014. [Google Scholar]
- Espitalie, J.; Deroo, G.; Marquis, F. Rock-Eval pyrolysis and its applications (part 2). Revue de l'Institut Français du Pétrole 1985, 40, 755–784. [Google Scholar] [CrossRef]
- Rawls, W.J.; Brakensiek, D.L.; Saxton, K.E. Estimating soil water retention from soil properties. J. Irrig. Drain. Eng. 1982, 108, 166–171. [Google Scholar]
- Richards, L.A.; Weaver, L.R. Moisture retention by some irrigated soils as related to soil moisture tension. J. Agric. Res. 1944, 69, 215–235. [Google Scholar]
- Turc, L. Estimation of irrigation water requirements, potential evapotranspiration: A simple climatic formula evolved up to date. Ann. Agron. 1961, 12, 13–49. [Google Scholar]
- Damagnez, J.; Riou, C.; de Villele, O.; El Amami, S. Estimation et Mesure de L’évapotranspiration Potentielle en Tunisie. In Proceedings of the I.A.H.S General Assembly of Berkeley, Berkeley, CA, USA, 19–31 August 1963; pp. 98–119. [Google Scholar]
- Sanz-Cortés, F.; Martinez-Calvo, J.; Badenes, M.L.; Bleiholder, H.; Hack, H.; Llacer, G.; Meier, U. Phenological growth stages of olive trees (Olea europaea). Ann. Appl. Biol. 2002, 140, 151–157. [Google Scholar] [CrossRef]
- Loussert, R.; Brousse, G. L’Olivier. Techniques Méditerranéennes et Productions Agricoles; G.P. Maisonneuve et Larose: Paris, France, 1978; Tome 1. [Google Scholar]
Stations | Temperature (°C) | Precipitation (mm) | ETo Piche | Prec-ETo | ||||
---|---|---|---|---|---|---|---|---|
Annual | Aug. | Jan. | Annual | N° of Days | Max. Rain | Annual | Annual | |
Mean | Mean | Mean | Mean | with Rain | in 24 h | Mean (mm) | Mean (mm) | |
Beni Khedache | 20.1 | 29.6 | 11.0 | 271.5 | 30 | 140.0 | 2375.3 | −2103.8 |
Medenine | 20.8 | 29.8 | 12.1 | 186.5 | 36 | 147.1 | 1930.3 | −1743.8 |
Equipment | Parameter Measured | Unit | Time Step |
---|---|---|---|
Meteorological Station | |||
Pyranometer | Solar radiation | W/m2 | 1 measurement/2 h |
Bucket rain gauge | Rainfall | mm | 1 measurement/2 h |
Sheltered sensor | Temperature | °C | 1 measurement/2 h |
Sheltered sensor | Relative humidity | % | 1 measurement/2 h |
Soil Station (8 Sensors and 8 Samples, Every 15 cm) | |||
ECH2O sensors: measurement based on the capacitance technique | Volumetric water content (θ) | m3/m3 (water vol./soil vol.) | 1 measurement/6 h |
Soil samples (laser granulometry) | Soil texture | %Clay, %Silt, %Sand | |
Soil samples (Rock-Eval pyrolysis) | Total organic carbon | % Organic Matter (%OM) |
Sensors | Thickness of Soil Layer | Texture from Particle Size Distribution | Clay (%) <0.002 mm | Silt (%) 0.002–0.063 mm | Sand (%) 0.063–2 mm | Organic Matter (%) | θFC (m3/m3) | θWP (m3/m3) |
---|---|---|---|---|---|---|---|---|
JESR | ||||||||
S1 (−20 cm) | 20 cm | Loam | 8.0 | 48.8 | 43.2 | 0.29 | 0.21 | 0.07 |
S2 (−35 cm) | 15 cm | Sandy loam | 4.9 | 30.4 | 64.7 | 0.13 | 0.15 | 0.05 |
S3 (−50 cm) | 15 cm | Sandy loam | 4.3 | 27.9 | 67.8 | 0.07 | 0.14 | 0.05 |
S4 (−65 cm) | 15 cm | Loamy sand | 3.3 | 21.9 | 74.8 | 0.12 | 0.12 | 0.04 |
S5 (−80 cm) | 15 cm | Loamy sand | 3.2 | 20.9 | 75.9 | 0.07 | 0.12 | 0.04 |
S6 (−95 cm) | 15 cm | Loamy sand | 2.8 | 22.0 | 75.2 | 0.04 | 0.12 | 0.04 |
S7 (−110 cm) | 15 cm | Loamy sand | 2.5 | 12.9 | 84.5 | 0.04 | 0.10 | 0.04 |
S8 (−125 cm) | 15 cm | Sandy loam | 3.7 | 23.4 | 72.9 | 0.07 | 0.13 | 0.05 |
Average: | ||||||||
0.136 | 0.048 | |||||||
GULLY | ||||||||
S1 (−20 cm) | 20 cm | Loam | 7.8 | 51.0 | 41.2 | 0.17 | 0.21 | 0.07 |
S2 (−35 cm) | 15 cm | Sandy loam | 5.9 | 30.4 | 63.8 | 0.07 | 0.15 | 0.06 |
S3 (−50 cm) | 15 cm | Sandy loam | 5.2 | 34.3 | 60.5 | 0.32 | 0.17 | 0.06 |
S4 (−65 cm) | 15 cm | Loamy sand | 2.2 | 17.1 | 80.7 | 0.15 | 0.11 | 0.04 |
S5 (v80 cm) | 15 cm | Loamy sand | 3.0 | 18.3 | 78.7 | 0.07 | 0.11 | 0.04 |
S6 (−95 cm) | 15 cm | Loamy sand | 3.1 | 15.6 | 81.4 | 0.06 | 0.11 | 0.04 |
S7 (−110 cm) | 15 cm | Sandy loam | 7.2 | 39.5 | 53.3 | 0.04 | 0.18 | 0.06 |
S8 (−125 cm) | 15 cm | Loamy sand | 2.8 | 15.8 | 81.4 | 0.03 | 0.11 | 0.04 |
Average: | ||||||||
0.143 | 0.051 |
Date | Total Water Content (mm/1.25 m) | Difference Jesr-Gully | Jesr | Gully | |||
---|---|---|---|---|---|---|---|
Jesr | Gully | Recharge (mm) | Rainfall (mm) | Recharge (mm) | Rainfall (mm) | ||
1 October 2017 (after summer) | 73.7 | 74.3 | −0.7% | ||||
9 November 2017 (before rain) | 74.7 | 74.3 | +0.5% | ||||
Peak after 10–12 November 2017 rain | 410.3 | 224.6 | +83% | 326.2 | 123.2 | 150.3 | 119.7 |
14 November 2017 (3 days after rain) | 322.9 | 224.6 | +44% | ||||
26 November 2017 (2 weeks after rain) | 277.5 | 219.8 | +26% | ||||
19 December, 2017 (before rain) | 246.0 | 202.5 | +22% | ||||
Peak after 20–21 December 2017 rain | 343.8 | 232.9 | +48% | 97.8 | 45 | 30.4 | 41.2 |
23 December 2017 (3 days after rain) | 309.6 | 231.7 | +34% | ||||
4 January 2018 (2 weeks after rain) | 274.8 | 213.1 | +29% | ||||
1 March 2018 (early spring) | 231.4 | 141.0 | +64% | ||||
1 April 2018 (spring) | 183.7 | 62.2 | +196% | ||||
20 July 2018 (summer) | 129.5 | 52.9 | +145% | ||||
18 August 2018 (before rain) | 125.7 | 50.8 | +147% | ||||
Peak after 19 August 2018 rain | 286.9 | 307.7 | −7% | 161.2 | 26.7 | 256.8 | 23.1 |
21 August 2018 (3 days after rain) | 273.1 | 270.2 | +1.1% | ||||
2 September 2018 (2 weeks after rain) | 228.0 | 228.9 | −0.4% | ||||
19 September 2018 (last soil record) | 175.7 | 158.8 | +11% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calianno, M.; Fallot, J.-M.; Ben Fraj, T.; Ben Ouezdou, H.; Reynard, E.; Milano, M.; Abbassi, M.; Ghram Messedi, A.; Adatte, T. Benefits of Water-Harvesting Systems (Jessour) on Soil Water Retention in Southeast Tunisia. Water 2020, 12, 295. https://doi.org/10.3390/w12010295
Calianno M, Fallot J-M, Ben Fraj T, Ben Ouezdou H, Reynard E, Milano M, Abbassi M, Ghram Messedi A, Adatte T. Benefits of Water-Harvesting Systems (Jessour) on Soil Water Retention in Southeast Tunisia. Water. 2020; 12(1):295. https://doi.org/10.3390/w12010295
Chicago/Turabian StyleCalianno, Martin, Jean-Michel Fallot, Tarek Ben Fraj, Hédi Ben Ouezdou, Emmanuel Reynard, Marianne Milano, Mohamed Abbassi, Aziza Ghram Messedi, and Thierry Adatte. 2020. "Benefits of Water-Harvesting Systems (Jessour) on Soil Water Retention in Southeast Tunisia" Water 12, no. 1: 295. https://doi.org/10.3390/w12010295
APA StyleCalianno, M., Fallot, J.-M., Ben Fraj, T., Ben Ouezdou, H., Reynard, E., Milano, M., Abbassi, M., Ghram Messedi, A., & Adatte, T. (2020). Benefits of Water-Harvesting Systems (Jessour) on Soil Water Retention in Southeast Tunisia. Water, 12(1), 295. https://doi.org/10.3390/w12010295