The Evolution of Gravel-Bed Rivers during the Post-Regulation Period in the Polish Carpathians
Abstract
:1. Introduction
2. Study Area
3. Research Methods
4. Human Impact on Carpathian Rivers
5. Results and Discussion
5.1. Comparison of the Raba River Channel Structure in 1976 and 2015
5.2. Role of High Water Stages in the Evolution of a Post-Regulation River
6. Conceptual Model of the Evolution of a Gravel-Bed River during the Post-Regulation Period
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bravard, J.P.; Petts, G.E. Human Impacts on Fluvial Hydrosystems. In The Fluvial Hydrosystems, Chapman and Hall; Petts, G.E., Amoros, C., Eds.; Springer: Dordrecht, The Netherlands, 1996; pp. 242–262. [Google Scholar]
- Wohl, E. Human Impacts to Mountain Streams. Geomorphology 2006, 79, 217–248. [Google Scholar] [CrossRef] [Green Version]
- Rinaldi, M.; Surian, N.; Comiti, F.; Bussettini, M. A Method for the Assessment and Analysis of the Hydromorphological Condition of Italian Streams: The Morphological Quality Index (MQI). Geomorphology 2013, 180, 96–108. [Google Scholar] [CrossRef]
- Korpak, J. The Influence of River Training on Mountain Channel Changes (Polish Carpathian Mountains). Geomorphology 2007, 92, 166–181. [Google Scholar] [CrossRef]
- Wyżga, B.; Zawiejska, J.; Radecki-Pawlik, A.; Hajdukiewicz, H. Environmental Change, Hydromorphological Reference Conditions and the Restoration of Polish Carpathian Rivers. Earth Surf. Process. Landf. 2012, 37, 1213–1226. [Google Scholar] [CrossRef]
- Korpak, J.; Krzemień, K.; Radecki-Pawlik, A. Wpływ czynników antropogenicznych na zmiany koryt cieków karpackich. Infrastruktura I Ekologia Terenów Wiejskich 2008, 4, 1–88. [Google Scholar]
- Wyżga, B.; Zawiejska, J.; Radecki-Pawlik, A. Impact of Channel Incision on the Hydraulics of Flood Flows: Examples from Polish Carpathian Rivers. Geomorphology 2016, 272, 10–20. [Google Scholar] [CrossRef]
- Gorczyca, E. Rozwój Górskich Żwirodennych Koryt Rzecznych w Warunkach Antropopresji; Instytut Geografii i Gospodarki Przestrzennej Uniwersytetu Jagiellońskiego: Kraków, Poland, 2016; pp. 1–240. [Google Scholar]
- Wyżga, B. Present-day Downcutting of the Raba River Channel (Western Carpathians, Poland) and its Environmental Effects. Catena 1991, 18, 551–566. [Google Scholar] [CrossRef]
- Wyżga, B. River Response to Channel Regulation: Case Study of the Raba River, Carpathians, Poland. Earth Surf. Process. Landf. 1993, 18, 541–556. [Google Scholar] [CrossRef]
- Wyżga, B. Impact of the Channelization—Induced Incision of the Skawa and Wisłoka Rivers, Southern Poland, on the Conditions of Overbank Deposition. Regulated Rivers. Res. Manag. 2001, 17, 85–100. [Google Scholar]
- Perzanowska, J. Pionierska roślinność na kamieńcach górskich potoków. In Monitoring Siedlisk Przyrodniczych. Przewodnik Metodyczny. Część II; Mróz, W., Ed.; Główny Inspektorat Ochrony Środowiska: Warszawa, Poland, 2012; pp. 170–180. [Google Scholar]
- Rinaldi, R.; Wyżga, B.; Surian, N. Sediment Mining in Alluvial Channels: Physical Effects and Management Perspectives. River Res. Appl. 2005, 21, 805–828. [Google Scholar] [CrossRef] [Green Version]
- Gorczyca, E.; Krzemień, K.; Sobucki, M.; Jarzyna, K. Can beaver impact promote river renaturalization? The example of the Raba River, southern Poland. Sci. Total Environ. 2018, 615, 1048–1060. [Google Scholar] [CrossRef]
- Kondolf, G.M. Setting goals in river restoration: When and where can the river “heal itself”. Stream Restor. Dyn. Fluv. Syst. 2011, 29–43. [Google Scholar]
- Rinaldi, M.; Simoncini, C.; Piégay, H. Scientific design strategy for promoting sustainable sediment management: The case of the Magra River (Central-Northern Italy). River Res. Appl. 2009, 25, 607–625. [Google Scholar] [CrossRef]
- Comiti, F.; Da Canal, M.; Surian, N.; Mao, L.; Picco, L.; Lenzi, M.A. Channel adjustments and vegetation cover dynamics in a large gravel bed river over the last 200 years. Geomorphology 2011, 125, 147–159. [Google Scholar] [CrossRef]
- Bańkowska, A.; Sawa, K.; Popek, Z.; Wasilewicz, M.; Żelazo, J. Studia wybranych przykładów renaturyzacji rzek. Infrastruktura i Ekologia Terenów Wiejskich 2010, 9, 181–196. [Google Scholar]
- Duszyński, R. Ekologiczne techniki ochrony brzegów i rewitalizacja rzek. Inżynieria Morska i Geotechnika 2007, 6, 341–351. [Google Scholar]
- Pedersen, M.L.; Andersen, J.M.; Nielsen, K.; Linnemann, M. Restoration of Skjern River and its valley: Project description and general ecological changes in the project area. Ecol. Eng. 2007, 30, 131–144. [Google Scholar] [CrossRef]
- Junk, W.J.; Bayley, P.B.; Sparks, R.E. The flood pulse concept in river-floodplain systems. Can. Spec. Publ. Fish. Aquat. Sci. 1989, 106, 110–127. [Google Scholar]
- Tockner, K.; Malard, F.; Ward, J.V. An extension of the flood pulse concept. Hydrol. Process. 2000, 14, 2861–2883. [Google Scholar] [CrossRef]
- Ward, J.V. The four-dimensional nature of lotic ecosystems. J. N. Am. Benthol. Soc. 1989, 8, 2–8. [Google Scholar] [CrossRef]
- Ward, J.V.; Tockner, K. Biodiversity: Towards a unifying theme for river ecology. Freshw. Biol. 2001, 46, 807–819. [Google Scholar] [CrossRef]
- Benjankar, R.; Yager, E.M. The impact of different sediment concentrations and sediment transport formulas on the simulated floodplain processes. J. Hydrol. 2012, 450, 230–243. [Google Scholar] [CrossRef]
- Juez, C.; Schärer, C.; Jenny, H.; Schleiss, A.J.; Franca, M.J. Floodplain Land Cover and Flow Hydrodynamic Control of Overbank Sedimentation in Compound Channel Flows. Water Resour. Res. 2019, 55, 9072–9091. [Google Scholar] [CrossRef]
- Stanford, J.A.; Ward, J.V. An ecosystem perspective of alluvial rivers: Connectivity and the hyporheic corridor. J. N. Am. Benthol. Soc. 1993, 12, 48–60. [Google Scholar] [CrossRef]
- Ward, J.V.; Tockner, K.; Arscott, D.B.; Claret, C. Riverine landscape diversity. Freshw. Biol. 2002, 47, 517–539. [Google Scholar] [CrossRef] [Green Version]
- Stupnicka, E. Geologia Regionalna Polski; Wydawnictwa Uniwersytetu Warszawskiego: Warszawa, Poland, 1997; pp. 1–332. [Google Scholar]
- Punzet, J. Przepływy charakterystyczne. In Dorzecze Górnej Wisły; cz. I, PWN, Warszawa: Kraków, Poland, 1991; pp. 167–215. [Google Scholar]
- Soja, M.; Zborowski, A. Wybrane zagadnienia zagospodarowania przestrzennego zlewni Raby. Pr. Geogr. IG UJ 2000, 106, 119–140. [Google Scholar]
- Soja, R. Hydrologiczne aspekty antropopresji w polskich Karpatach. Pr. Geogr. IG UJ 2002, 186, 1–130. [Google Scholar]
- Kamykowska, M.; Kaszowski, L.; Krzemień, K. River Channel Mapping Instruction. Key to the River Bed description. Pr. Geogr. IG UJ 1999, 104, 9–25. [Google Scholar]
- Krzemień, K. (Ed.) Struktura Koryt Rzek i Potoków (Studium Metodyczne); Instytut Geografii i Gospodarki Przestrzennej Uniwersytetu Jagiellońskiego: Kraków, Poland, 2012; pp. 1–144. [Google Scholar]
- Wolman, M.G. A method of sampling coarse river-bed material. EOS Trans. Am. Geophys. Union 1954, 35, 951–956. [Google Scholar] [CrossRef]
- Kaszowski, L. Struktura i typy koryt rzecznych w dorzeczu Raby. Sprawozdania z Posiedzeń Komisji Naukowych PAN 1980, 22, 162–163. [Google Scholar]
- Froehlich, W.; Walling, D.E. The role of unmetalled roads as a sediment source in the fluvial systems of the Polish Flysch Carpathians. IAHS Publ. 1997, 245, 159–168. [Google Scholar]
- Froehlich, W.; Słupik, J. Rola dróg w kształtowaniu spływu i erozji w karpackich zlewniach fliszowych. Przegląd Geogr. 1986, 58, 67–87. [Google Scholar]
- Starkel, L. Rozwój rzeźby Polskich Karpat fliszowych w holocenie. Pr. Geogr. IG PAN 1960, 22, 1–239. [Google Scholar]
- Klimek, K.; Trafas, K. Young-Holocene Changes in the Course of the Dunajec River in the Beskid Sadecki Mts. (Western Carpathians). Studia Geomorphol. Carpatho Balc. 1972, 6, 85–103. [Google Scholar]
- Starkel, L.; Łajczak, A. Kształtowanie rzeźby den dolin w Karpatach (koryt i równin zalewowych). In Współczesne Przemiany Rzeźby Polski; Starkel, L., Kostrzewski, A., Kotarba, A., Krzemień, K., Eds.; Instytut Geografii i Gospodarki Przestrzennej Uniwersytetu Jagiellońskiego: Kraków, Poland, 2008; pp. 95–108. [Google Scholar]
- Kościelniak, J. Influence of River Training on Functioning of the Biały Dunajec River Channel System. Geomorphol. Slovaca 2004, 1, 62–67. [Google Scholar]
- Kędzior, A. Roboty wodne i melioracyjne w południowej Małopolsce. cz. III. In Regulacja Rzek Górskich, Zbiorniki Wody I Zabudowanie Potoków Górskich; Ministerstwo Robót Publicznych: Lwów, Poland, 1931. [Google Scholar]
- Łapuszek, M.; Lenar-Matyas, A. Utrzymanie I Zagospodarowanie Rzek Górskich; Wydawnictwo Politechniki Krakowskiej: Kraków, Poland, 2013; pp. 1–283. [Google Scholar]
- Zawiejska, J.; Krzemień, K. Man—Induced Changes in the Structure and Dynamic of the Upper Dunajec River Channel. Geogr. Časopis 2004, 56, 111–124. [Google Scholar]
- Gorczyca, E.; Krzemień, K.; Liro, M.; Sobucki, M. Changes of Mountain River Channels and their Environmental Effects. In Open Channel Hydraulics, River Hydraulics Structures and Fluvial Geomorphology; Radecki-Pawlik, A., Pagliara, S., Hradecký, J., Hendrickson, E., Eds.; Science Publishers, CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2017; pp. 303–321. [Google Scholar]
- Wharton, G. Managing River Environments; Cambridge University Press: Cambridge, UK, 2000; pp. 1–92. [Google Scholar]
- Lach, J.; Wyżga, B. Channel Incision and Flow Increase of the Upper Wisłoka River, Southern Poland, Subsequent to the Reforestation of its Catchment. Earth Surf. Process. Landf. 2002, 27, 445–462. [Google Scholar] [CrossRef]
- Krzemień, K. The Czarny Dunajec River, Poland, as an Example of Human-induced Development Tendencies in a Mountain River Channel. Landf. Anal. 2003, 4, 57–64. [Google Scholar]
- Jeleński, J.; Wyżga, B. The Raba River at Lubień. Erodible river corridor as a restoration measure for mountains rivers. In Proceedings of the International Conference ‘Towards the Best Practice of River Restoration and Maintenance’, Kraków, Poland, 20–23 September 2016; Zawiejska, J., Wyżga, B., Eds.; Ab Ovo Association: Kraków, Poland, 2016; pp. 67–68. [Google Scholar]
- Galicia and Bucowina (1861–1864) Second Military Survey of the Habsburg Empire. Available online: https://mapire.eu/en/map/secondsurvey-galicia/?layers=11&bbox=2648791.450423253%2C6410880.850074071%2C2700348.2260016045%2C6426168.255731106 (accessed on 13 December 2019).
- Łapuszek, M.; Ratomski, J. Metodyka określania i charakterystyka przebiegu oraz prognoza erozji dennej rzek górskich dorzecza górnej Wisły. Inżynieria Środowiska Monografia 2006, 332, 1–122. [Google Scholar]
- Wyżga, B. Wcinanie się rzek polskich Karpat w ciągu XX wieku. In Stan Środowiska Rzek Południowej Polski I Możliwość Jego Poprawy—Wybrane Aspekty; Wyżga, B., Ed.; Instytut Ochrony Przyrody PAN: Kraków, Poland, 2008; pp. 7–39. [Google Scholar]
- Zawiejska, J.; Wyżga, B. Twentieth-century channel change on the Dunajec River, southern Poland: patterns, causes and controls. Geomorphology 2010, 117, 234–246. [Google Scholar] [CrossRef]
- Wyżga, B. A geomorphologist’s criticism of the engineering approach to channelization of gravel-bed rivers: Case study of the Raba River, Polish Carpathians. Environ. Manag. 2001, 28, 341–358. [Google Scholar] [CrossRef] [PubMed]
- Erskine, W.D. Downstream Hydrogeomorphic Impacts of Eildon Reservoir on the Mid—Goulburn River. Vic. Proc. Soc. Vic. 1996, 108, 1–15. [Google Scholar]
- Requena, P.; Weichert, R.B.; Minor, H.E. Self-widening by Lateral Erosion in Gravel Bed Rivers. In River Flow; Ferreira, A., Cardoso, L., Eds.; Taylor & Francis Group: Lisbon, Portugal, 2006; pp. 1801–1809. [Google Scholar]
- Gorczyca, E.; Krzemień, K.; Wrońska-Wałach, D.; Boniecki, M. Significance of Extreme Hydro-geomorphological Events in the Transformation of Mountain Valleys (Northern Slopes of the Western Tatra Range), Carpathian Mountains, Poland. Catena 2014, 121, 127–141. [Google Scholar] [CrossRef]
- Czech, W.; Radecki-Pawlik, A.; Wyżga, B.; Hajdukiewicz, H. Modelling the Flooding Capacity of a Polish Carpathian River: A Comparison of Constrained and Free Channel Conditions. Geomorphology 2016, 272, 32–42. [Google Scholar] [CrossRef]
- Hajdukiewicz, H.; Wyżga, B.; Mikuś, P.; Zawiejska, J.; Radecki-Pawlik, A. Impact of a Large Flood on Mountain River Habitats, Channel Morphology and Valley Infrastructure. Geomorphology 2016, 272, 55–67. [Google Scholar] [CrossRef]
- Lehotsky, M.; Rusnak, M.; Kidova, A. Application of Remote Sensing and the GIS in Interpretation of River Geomorphic Response to Floods. In Open Channel Hydraulics, River Hydraulics Structures and Fluvial Geomorphology; Radecki-Pawlik, A., Pagliara, S., Hradecký, J., Hendrickson, E., Eds.; Science Publishers, CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2017; pp. 388–399. [Google Scholar]
- Punzet, J. Zmiany w przebiegu stanów wody w dorzeczu górnej Wisły na przestrzeni 100 lat (1871–1970). Folia Geogr. Ser. Geogr. Phys. 1981, 14, 5–28. [Google Scholar]
- Nicholas, A.P.; Ashworth, P.J.; Kirkby, M.J.; Macklin, M.G.; Murray, T. Sediment Slugs: Large-scale Fluctuations in Fluvial Transport Rates and Storage Volumes. Prog. Phys. Geogr. 1995, 19, 500–519. [Google Scholar] [CrossRef]
- James, A.L. Secular sediment waves, channel bed waves and legacy sediment. Geogr. Compass 2010, 4, 576–598. [Google Scholar] [CrossRef]
- Church, M.A.; Jones, D. Channel bars in gravel-bed rivers. In Gravel-Bed Rivers: Fluvial Processes, Engineering and Management; Hey, R.D., Bathurst, J.C., Theme, C.R., Eds.; John Wiley & Sons: Chichester, UK, 1982; pp. 291–338. [Google Scholar]
- Gurnell, A.M.; Petts, G.E.; Harris, N.; Ward, J.V.; Tockner, K.; Edwards, P.J.; Kollmann, J. Large wood retention in river channels: The case of the Fiume Tagliamento, Italy. Earth Surf. Process. Landf. 2000, 25, 255–275. [Google Scholar] [CrossRef]
- Hajdukiewicz, H.; Wyżga, B.; Amirowicz, A.; Oglęcki, P.; Radecki-Pawlik, A.; Zawiejska, J.; Mikuś, P. Ecological state of a mountain river before and after a large flood: Implications for river status assessment. Sci. Total Environ. 2018, 610, 244–257. [Google Scholar] [CrossRef]
Landform | Bars’ Area (m2) | Undercuts’ Area (m2) |
---|---|---|
1976 | 521,261 | 26,107 |
2009 | 712,080 | no data |
2015 | 1,057,447 | 83,222 |
Channel Reach | A | B | C | D |
---|---|---|---|---|
Channel | Single, compact | Single, compact | Single, expanded | Multi-threaded, wide |
Sinuosity ratio | 1.0–1.1 | 1.0–1.2 | 1.1–1.5 | <1.5 |
W/D ratio | <12 | <12 | >12 | >15 |
Dominant process | debris transport, downcutting | debris transport, downcutting | lateral erosion, accumulation | accumulation, lateral erosion |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorczyca, E.; Krzemień, K.; Jarzyna, K. The Evolution of Gravel-Bed Rivers during the Post-Regulation Period in the Polish Carpathians. Water 2020, 12, 254. https://doi.org/10.3390/w12010254
Gorczyca E, Krzemień K, Jarzyna K. The Evolution of Gravel-Bed Rivers during the Post-Regulation Period in the Polish Carpathians. Water. 2020; 12(1):254. https://doi.org/10.3390/w12010254
Chicago/Turabian StyleGorczyca, Elżbieta, Kazimierz Krzemień, and Krzysztof Jarzyna. 2020. "The Evolution of Gravel-Bed Rivers during the Post-Regulation Period in the Polish Carpathians" Water 12, no. 1: 254. https://doi.org/10.3390/w12010254