Assessment of Spatial Nitrate Patterns in An Eastern Iowa Watershed Using Boat-Deployed Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Water Quality Measurement Equipment
2.3. Data Collection
3. Results and Discussion
3.1. Longitudinal Patterns of NO3–N Concentrations
3.2. Normalized Concentration Patterns
3.3. Regional Patterns
3.4. Methodological Implications for Other Catchments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Secchi, P.A. Relazione delle esperienze fatte a bordo dena pontificia pirocorvetta L’Immacolata Concezione per determinare la transparenza del mare [Report on experiments on board the papal steam corvette Immacolata Concezione to determine the transparency of the sea]. Nuovo Cim. 1865, 20, 205–237. [Google Scholar]
- Matli, V.R.; Fang, S.; Guinness, J.; Rabalais, N.N.; Craig, J.K.; Obenour, D.R. Space-Time Geostatistical Assessment of Hypoxia in the Northern Gulf of Mexico. Environ. Sci. Technol. 2018, 52, 12484–12493. [Google Scholar] [CrossRef] [PubMed]
- Rabalais, N.N.; Wiseman, W.J.; Turner, R.E. Comparison of continuous records of near-bottom dissolved oxygen from the hypoxia zone along the Louisiana coast. Estuaries 1994, 17, 850. [Google Scholar] [CrossRef]
- Klump, J.V.; Brunner, S.L.; Grunert, B.K.; Kaster, J.L.; Weckerly, K.; Houghton, E.M.; Kennedy, J.A.; Valenta, T.J. Evidence of persistent, recurring summertime hypoxia in Green Bay, Lake Michigan. J. Great Lakes Res. 2018, 44, 841–850. [Google Scholar] [CrossRef]
- Hondzo, M.; Voller, V.R.; Morris, M.; Foufoula-Georgiou, E.; Finlay, J.; Ganti, V.; Power, M.E. Estimating and scaling stream ecosystem metabolism along channels with heterogeneous substrate. Ecohydrology 2013, 6, 679–688. [Google Scholar] [CrossRef]
- Maher, D.T.; Santos, I.R.; Leuven, J.R.; Oakes, J.M.; Erler, D.V.; Carvalho, M.C.; Eyre, B.D. Novel use of cavity ring-down spectroscopy to investigate aquatic carbon cycling from microbial to ecosystem scales. Environ. Sci. Technol. 2013, 47, 12938–12945. [Google Scholar] [CrossRef]
- Blain, S.; Guillou, J.; Treguer, P.; Woerther, P.; Delauney, L.; Follenfant, E.; Gontier, O.; Hamon, M.; Leilde, B.; Masson, A.; et al. High frequency monitoring of the coastal marine environment using the MAREL buoy. J. Environ. Monit. 2004, 6, 569–575. [Google Scholar] [CrossRef]
- Drake, C.W.; Jones, C.S.; Schilling, K.E.; Amado, A.A.; Weber, L.J. Estimating nitrate-nitrogen retention in a large constructed wetland using high-frequency, continuous monitoring and hydrologic modeling. Ecol. Eng. 2018, 117, 69–83. [Google Scholar] [CrossRef]
- Jones, C.S.; Davis, C.A.; Drake, C.W.; Schilling, K.E.; Debionne, S.H.; Gilles, D.W.; Demir, I.; Weber, L.J. Iowa statewide stream nitrate load calculated using in situ sensor network. J. Am. Water Resour. Assoc. 2018, 54, 471–486. [Google Scholar] [CrossRef]
- Crawford, J.T.; Loken, L.C.; Casson, N.J.; Smith, C.; Stone, A.G.; Winslow, L.A. High-speed limnology: Using advanced sensors to investigate spatial variability in biogeochemistry and hydrology. Environ. Sci. Technol. 2014, 49, 442–450. [Google Scholar] [CrossRef] [Green Version]
- Butitta, V.L.; Carpenter, S.R.; Loken, L.C.; Pace, M.L.; Stanley, E.H. Spatial early warning signals in a lake manipulation. Ecosphere 2017, 8, e01941. [Google Scholar] [CrossRef] [Green Version]
- Stadler, P.; Loken, L.C.; Crawford, J.T.; Schramm, P.J.; Sorsa, K.; Kuhn, C.; Savio, D.; Striegl, R.G.; Butman, D.; Stanley, E.H.; et al. Spatial patterns of enzymatic activity in large water bodies: Ship-borne measurements of beta-D-glucuronidase activity as a rapid indicator of microbial water quality. Sci. Total Environ. 2019, 651, 1742–1752. [Google Scholar] [CrossRef] [PubMed]
- Loken, L.C.; Crawford, J.T.; Dornblaser, M.M.; Striegl, R.G.; Houser, J.N.; Turner, P.A.; Stanley, E.H. Limited nitrate retention capacity in the Upper Mississippi River. Environ. Res. Lett. 2018, 13, 074030. [Google Scholar] [CrossRef]
- Turner, P.A.; Griffis, T.J.; Baker, J.M.; Lee, X.; Crawford, J.T.; Loken, L.C.; Venterea, R.T. Regional-scale controls on dissolved nitrous oxide in the Upper Mississippi River. Geophys. Res. Lett. 2016, 43, 4400–4407. [Google Scholar] [CrossRef] [Green Version]
- Jones, C.S.; Nielsen, J.K.; Schilling, K.E.; Weber, L.J. Iowa stream nitrate and the Gulf of Mexico. PLoS ONE 2018, 13, e0195930. [Google Scholar] [CrossRef]
- Goolsby, D.A.; Battaglin, W.A.; Aulenbach, B.T.; Hooper, R.P. Nitrogen flux and sources in the Mississippi River Basin. Sci. Total Environ. 2000, 248, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Prior, J. Landforms of Iowa; University of Iowa Press: Iowa City, IA, USA, 1991. [Google Scholar]
- Jones, C.S.; Seeman, A.; Kyveryga, P.M.; Schilling, K.E.; Kiel, A.; Chan, K.S.; Wolter, C.F. Crop rotation and Raccoon River nitrate. J. Soil Water Conserv. 2016, 71, 206–219. [Google Scholar] [CrossRef]
- Gallant, A.L.; Sadinski, W.; Roth, M.F.; Rewa, C.A. Changes in historical Iowa land cover as context for assessing the environmental benefits of current and future conservation efforts on agricultural lands. J. Soil Water Conserv. 2011, 66, 67A–77A. [Google Scholar] [CrossRef] [Green Version]
- Homer, C.; Dewitz, J.; Yang, L.; Jin, S.; Danielson, P.; Xian, G.; Coulston, J.; Herold, N.; Wickham, J.; Megown, K. Completion of the 2011 National Land Cover Database for the conterminous United States–representing a decade of land cover change information. Photogramm. Eng. Remote Sens. 2015, 81, 345–354. [Google Scholar]
- Brauer, N.; O’Geen, A.T.; Dahlgren, R.A. Temporal variability in water quality of agricultural tailwaters: Implications for water quality monitoring. Agric. Water Manag. 2009, 96, 1001–1009. [Google Scholar] [CrossRef]
- Jones, C.S.; Kim, S.-W.; Wilton, T.F.; Schilling, K.E.; Davis, C.A. Nitrate uptake in an agricultural stream estimated from high-frequency, in-situ sensors. Environ. Monit. Assess. 2018, 190, 226–242. [Google Scholar] [CrossRef] [PubMed]
- Amado, A.A.; Schilling, K.E.; Jones, C.S.; Thomas, N.; Weber, L.J. Estimation of tile drainage contribution to streamflow and nutrient loads at the watershed scale based on continuously monitored data. Environ. Monit. Assess. 2017, 189, 426–438. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.S.; Kim, S.W.; Schilling, K.E. Use of continuous monitoring to assess stream nitrate flux and transformation patterns. Environ. Monit. Assess. 2017, 189, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.S.; Wang, B.; Schilling, K.E.; Chan, K.-S. Nitrate transport and supply limitations quantified using high-frequency stream monitoring and turning point analysis. J. Hydrol. 2017, 549, 581–591. [Google Scholar] [CrossRef]
- Schilling, K.E.; Jones, C.S.; Seeman, A.; Bader, E.; Filipiak, J. Nitrate-nitrogen patterns in engineered catchments in the upper Mississippi River basin. Ecol. Eng. 2012, 42, 1–9. [Google Scholar] [CrossRef]
- Schilling, K.E.; Kult, K.; Wilke, K.; Streeter, M.; Vogelgesang, J. Nitrate reduction in a reconstructed floodplain oxbow fed by tile drainage. Ecol. Eng. 2017, 102, 98–107. [Google Scholar] [CrossRef] [Green Version]
- Kalkhoff, S.J. Water Quality in the Eastern Iowa Basins, Iowa and Minnesota, 1996–1998; U.S. Geol. Surv. Circ 1210: Iowa City, IA, USA, 2000; Volume 37.
- Schilling, K.E.; Libra, R.D. The relationship of nitrate concentrations in streams to row crop land use in Iowa. J. Environ. Qual. 2000, 29, 1846–1851. [Google Scholar] [CrossRef]
- Jones, C.S.; Schilling, K.E.; Simpson, I.M.; Wolter, C.F. Iowa Stream Nitrate, Discharge and Precipitation: 30-Year Perspective. Environ. Manag. 2018, 62, 709–720. [Google Scholar] [CrossRef]
- Sprague, L.A.; Hirsch, R.M.; Aulenbach, B.T. Nitrate in the Mississippi River and its tributaries, 1980 to 2008: Are we making progress? Environ. Sci. Technol. 2011, 45, 7209–7216. [Google Scholar] [CrossRef]
- Jones, C.S.; Schilling, K.E. Iowa Statewide Stream Nitrate Loading: 2017–2018 Update. J. Iowa Acad. Sci. 2019, 126, 6–12. [Google Scholar] [CrossRef]
- Tomer, M.D.; Meek, D.W.; Jaynes, D.B.; Hatfield, J.L. Evaluation of Nitrate Nitrogen Fluxes from a Tile-Drained Watershed in Central Iowa. J. Environ. Qual. 2012, 32, 642. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.S.; Schilling, K.E.; Seeman, A. Relating carbon and nitrogen transport from constructed farm drainage. Agric. Water Manag. 2019, 213, 12–23. [Google Scholar] [CrossRef]
- Schilling, K.E.; Wolter, C.F. Estimation of streamflow, base flow, and nitrate-nitrogen loads in Iowa using multiple linear regression models. J. Am. Water Resour. Assoc. 2005, 41, 1333–1346. [Google Scholar] [CrossRef]
- Ikenberry, C.D.; Soupir, M.L.; Schilling, K.E.; Jones, C.S.; Seeman, A. Nitrate–Nitrogen Export: Magnitude and Patterns from Drainage Districts to Downstream River Basins. J. Environ. Qual. 2014, 43, 2024. [Google Scholar] [CrossRef]
Measured Parameter | NOx–N | T | SPC | pH | DO |
---|---|---|---|---|---|
Lower Detection Limit | 0.1 mg L−1 | −5 °C | 0 mS cm−1 | 4 | 0 mg L−1 |
Upper Detection Limit | 25 mg L−1 | 50 °C | 100 mS cm−1 | 10 | 60 mg L−1 |
Accuracy | ±3% + 0.5 mg L−1 | ±0.10 °C | ±0.5% + 0.001 mS cm−1 | ±0.2 | DO < 8 mg L−1, ±0.1 mg L−1 DO > 8 mg L−1, ±0.2 mg L−1 |
Precision | 0.1 mg L−1 | 0.01 °C | 0.001 mS cm−1 | 0.01 | 0.01 mg L−1 |
River | May | June | July | August |
---|---|---|---|---|
Iowa River | 14 May 2018 to 17 May 2018 | 6 June 2018 to 8 June 2018 | 10 July 2018 to 11 July 2018 | 6 August 2018 to August 2018 |
Cedar River | 29 May 2018 to 29 May 2018 | 28 June 2018 to 30 June 2018 | 16 July 2018 to 17 July 2018 | 9 August 2018 to 10 August 2018 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meulemans, M.J.; Jones, C.S.; Schilling, K.E.; Young, N.C.; Weber, L.J. Assessment of Spatial Nitrate Patterns in An Eastern Iowa Watershed Using Boat-Deployed Sensors. Water 2020, 12, 146. https://doi.org/10.3390/w12010146
Meulemans MJ, Jones CS, Schilling KE, Young NC, Weber LJ. Assessment of Spatial Nitrate Patterns in An Eastern Iowa Watershed Using Boat-Deployed Sensors. Water. 2020; 12(1):146. https://doi.org/10.3390/w12010146
Chicago/Turabian StyleMeulemans, Matthew J., Christopher S. Jones, Keith E. Schilling, Nathan C. Young, and Larry J. Weber. 2020. "Assessment of Spatial Nitrate Patterns in An Eastern Iowa Watershed Using Boat-Deployed Sensors" Water 12, no. 1: 146. https://doi.org/10.3390/w12010146
APA StyleMeulemans, M. J., Jones, C. S., Schilling, K. E., Young, N. C., & Weber, L. J. (2020). Assessment of Spatial Nitrate Patterns in An Eastern Iowa Watershed Using Boat-Deployed Sensors. Water, 12(1), 146. https://doi.org/10.3390/w12010146