Humidification–Dehumidification (HDH) Desalination System with Air-Cooling Condenser and Cellulose Evaporative Pad
Abstract
:1. Introduction
2. Experiment Setup
3. Thermodynamic Analysis
4. Results and Discussion
4.1. Part 1. Effect of Mass Ratio
4.2. Part 2. Effect of Power Consumption on COP
4.3. Part 3. Effect of Ambient Temperature
4.4. Part 4. Cost Comparison
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Symbol | Physical Quantity | Unit |
hf | Enthalpy of distilled water | kJ/kg |
hfg | Latent heat of water in vapor(liquid) | kJ/kg |
ha,1 | Enthalpy of air at inlet of humidifier | kJ/kg |
ha,2 | Enthalpy of air at outlet of humidifier | kJ/kg |
ha,3 | Enthalpy of air at outlet of dehumidifier | kJ/kg |
hc,i | Enthalpy of cooling air at inlet of dehumidifier | kJ/kg |
hc,o | Enthalpy of cooling air at outlet of dehumidifier | kJ/kg |
hf,0 | Enthalpy of water at ambient temperature | kJ/kg |
hw,i | Enthalpy of water at inlet of humidifier | kJ/kg |
hw,o | Enthalpy of water at outlet of humidifier | kJ/kg |
hx,ideal | Enthalpy of any stream(x) in ideal state | kJ/kg |
ma | Mass rate of air | kg/s |
mc | Mass rate of cooling air | kg/s |
md | Produced fresh water rate | kg/day |
me | Evaporation rate in humidifier | kg/s |
mw,i | Mass rate of hot water at inlet of humidifier | kg/s |
mw,o | Mass rate of water at outlet of humidifier | kg/s |
Qin | Heat input to heat the water | kW |
T0 | Ambient temperature | °C |
Ta,1 | Air temperature at inlet of humidifier | °C |
Ta,2 | Air temperature in the air duct | °C |
Tw | Water temperature | °C |
wa,1 | Absolute humidity at inlet of the humidifier | kg vapor/kg dry air |
wa,2 | Absolute humidity in the air duct | kg vapor/kg dry air |
Win | Total power consumption of the system excluding heaters | kW |
Humidifier effectiveness | - | |
Dehumidifier effectiveness | - |
References
- Wakil, M.; Burhan, M.; Ang, L.; Choon, K. Energy-water-environment nexus underpinning future desalination sustainability. Desalination 2017, 413, 52–64. [Google Scholar]
- Al-Karaghouli, A.; Kazmerski, L.L. Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renew. Sustain. Energy Rev. 2013, 24, 343–356. [Google Scholar] [CrossRef]
- Sharon, H.; Reddy, K.S. A review of solar energy driven desalination technologies. Renew. Sustain. Energy Rev. 2015, 41, 1080–1118. [Google Scholar] [CrossRef]
- Kasaeian, A.; Babaei, S.; Jahanpanah, M.; Sarrafha, H.; Alsagri, A.S.; Ghaffarian, S.; Yan, W.-M. Solar humidification-dehumidification desalination systems: A critical review. Energy Convers. Manag. 2019, 201, 112129. [Google Scholar] [CrossRef]
- He, W.F.; Chen, J.J.; Han, D.; Luo, L.T.; Wang, X.C.; Zhang, Q.Y.; Yao, S.Y. Energetic, entropic and economic analysis of an open-air, open-water humidification dehumidification desalination system with a packing bed dehumidifier. Energy Convers. Manag. 2019, 199, 112016. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Qasem, N.A.A.; Zubair, S.M. Analytical and numerical schemes for thermodynamically balanced humidification-dehumidification desalination systems. Energy Convers. Manag. 2019, 200, 112052. [Google Scholar] [CrossRef]
- Al-enezi, G.; Ettouney, H.; Fawzy, N. Low temperature humidification dehumidification desalination process. Energy Convers. Manag. 2006, 47, 470–484. [Google Scholar] [CrossRef]
- Chang, Z.; Zheng, H.; Yang, Y.; Su, Y.; Duan, Z. Experimental investigation of a novel multi-effect solar desalination system based on humidi fi cation e dehumidi fi cation process. Renew. Energy 2014, 69, 253–259. [Google Scholar] [CrossRef]
- Aburub, A.; Aliyu, M.; Lawal, D.U.; Antar, M.A. Experimental investigations of a cross-flow humdification dehumidification desalination system. Int. Water Technol. J. 2017, 7, 198–208. [Google Scholar]
- Ahmed, H.A.; Ismail, I.M.; Saleh, W.F.; Ahmed, M. Experimental investigation of humidification-dehumidification desalination system with corrugated packing in the humidi fier. Desalination 2017, 410, 19–29. [Google Scholar] [CrossRef]
- Kabeel, A.E.; Abdelgaied, M. Experimental evaluation of a two-stage indirect solar dryer with reheating coupled with HDH desalination system for remote areas. Desalination 2018, 425, 22–29. [Google Scholar] [CrossRef]
- Amer, E.H.; Kotb, H.; Mostafa, G.H. Theoretical and experimental investigation of humidification–dehumidification desalination unit. Desalination 2009, 249, 949–959. [Google Scholar] [CrossRef]
- Narayan, G.; Sharqawy, M.H.; Lienhard V, J.H.; Zubair, S.M. Thermodynamic analysis of humidifi cation dehumidifi cation desalination cycles. Desalin. Water Treat. 2010, 16, 339–353. [Google Scholar] [CrossRef] [Green Version]
- Narayan, G.; Mistry, K.H.; Sharqawy, M.H.; Zubair, S.M.; Lienhard, J.H. Energy effectiveness of simultaneous heat and mass exchange devices. Front. Heat Mass Transf. 2010, 1, 023001. [Google Scholar] [CrossRef]
- Lawal, D.; Antar, M.A.; Khalifa, A.; Zubair, S.M.; Al-Sulaiman, F. Humidification-dehumidification desalination system operated by a heat pump. Energy Convers. Manag. 2017, 161, 128–140. [Google Scholar] [CrossRef]
- He, W.F.; Han, D.; Ji, C. Investigation on humidification dehumidification desalination system coupled with heat pump. Desalination 2018, 436, 152–160. [Google Scholar] [CrossRef]
- Hu, S.S.; Huang, B.J. Study of a high efficiency residential split water-cooled air conditioner. Appl. Therm. Eng. 2005, 25, 1599–1613. [Google Scholar] [CrossRef]
- Hou, T.; Hsieh, Y.; Lin, T.; Chuang, Y.; Huang, B. Cellulose-pad water cooling system with cold storage. Int. J. Refrig. 2016, 69, 383–393. [Google Scholar] [CrossRef]
- Yamal, C.; Solmus, I. A solar desalination system using humidification—dehumidification process: Experimental study and comparison with the theoretical results. Desalination 2008, 220, 538–551. [Google Scholar] [CrossRef]
- Nafey, A.S.; Fath, H.E.S.; El-Helaby, S.O.; Soliman, A. Solar desalination using humidification—dehumidification Part II. An experimental investigation. Energy Convers. Manag. 2004, 45, 1263–1277. [Google Scholar] [CrossRef]
- Hermosillo, J.; Arancibia-bulnes, C.A.; Estrada, C.A. Water desalination by air humidification: Mathematical model and experimental study. Sol. Energy 2012, 86, 1070–1076. [Google Scholar] [CrossRef]
- Ng, K.C.; Shahzad, M.W.; Son, H.S.; Hamed, O.A. An exergy approach to efficiency evaluation of desalination. Appl. Phys. Lett. 2017, 110, 184101. [Google Scholar] [CrossRef] [Green Version]
Top Temperature of Hot Water | Feed Water Flow Rate | Carrying Air Flow Rate | Cooling Medium and Temperature | Max Productivity | Reference |
---|---|---|---|---|---|
35~45 °C | 0.02 kg/s (75 kg/h) | 0.0014~0.0028 kg/s (5~10 nm3/h) | Water cooling; 10~20 °C | 7.6 kg/day | [7] |
35.5~50 °C | 0.085~0.115 kg/s | 0.045~0.068 kg/s | Water cooling; 19 °C | 26.4 kg/day (1.1 kg/h) | [19] |
25.94~36.75 °C | 0.005~0.045 kg/s | 0.0049~0.0294 kg/s | Water cooling; 24~33 °C | 10.25 kg/day | [20] |
44.6~68.9 °C | 0.012~0.023 kg/s | 0.040~0.043 kg/s | Water cooling; Temperature not specified | 34.8 kg/day (1.45 kg/h) | [21] |
60~75 °C | 0.2 kg/s | 0.177 kg/s | Water cooling; 30+/−2 °C | 92 kg/day | [9] |
45~50 °C | 0.16 kg/s | 0.036 kg/s | Air cooling; 16~27 °C | 129 kg/day | Current work |
Run # | Hot Water Temperature (°C) | Water Mass Rate mw,i (kg/s) | Air Mass Rate ma (kg/s) | MR | Produced Water md (kg/day) | GOR | Ambient Temperature T0 (°C) | Ambient Relative Humidity |
---|---|---|---|---|---|---|---|---|
1 | 40.1 | 0.14 | 0.038 | 3.7 | 72 | 0.45 | 16.0 | 86% |
2 | 49.6 | 0.14 | 0.037 | 3.8 | 122 | 0.52 | 15.0 | 91% |
3 | 50.5 | 0.10 | 0.041 | 2.5 | 115 | 0.53 | 14.7 | 81% |
4 | 49.5 | 0.19 | 0.042 | 4.5 | 129 | 0.54 | 15.0 | 81% |
Run # | Hot Water Temp. (°C) | Water Mass Rate mw,i (kg/s) | Produced Water md (L/h) | Blower Power PH (W) | Fan Power PDH (W) | Power of Two Pumps (W) | Total Power Consumption (W) | GOR | COP |
---|---|---|---|---|---|---|---|---|---|
1 | 48.9 | 0.19 | 3.53 | 44 | 47 | 40 | 131 | 0.50 | 18.0 |
2 | 49.0 | 0.19 | 3.33 | 33 | 47 | 40 | 120 | 0.51 | 18.6 |
3 | 49.1 | 0.19 | 3.33 | 21 | 47 | 40 | 108 | 0.50 | 20.7 |
4 | 49.1 | 0.19 | 2.74 | 21 | 35 | 40 | 96 | 0.46 | 19.1 |
5 | 49.0 | 0.19 | 0.6 | 21 | 24 | 40 | 85 | 0.11 | 4.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Chen, Y.-P.; Wu, P.-H.; Huang, B.-J. Humidification–Dehumidification (HDH) Desalination System with Air-Cooling Condenser and Cellulose Evaporative Pad. Water 2020, 12, 142. https://doi.org/10.3390/w12010142
Xu L, Chen Y-P, Wu P-H, Huang B-J. Humidification–Dehumidification (HDH) Desalination System with Air-Cooling Condenser and Cellulose Evaporative Pad. Water. 2020; 12(1):142. https://doi.org/10.3390/w12010142
Chicago/Turabian StyleXu, Li, Yan-Ping Chen, Po-Hsien Wu, and Bin-Juine Huang. 2020. "Humidification–Dehumidification (HDH) Desalination System with Air-Cooling Condenser and Cellulose Evaporative Pad" Water 12, no. 1: 142. https://doi.org/10.3390/w12010142
APA StyleXu, L., Chen, Y.-P., Wu, P.-H., & Huang, B.-J. (2020). Humidification–Dehumidification (HDH) Desalination System with Air-Cooling Condenser and Cellulose Evaporative Pad. Water, 12(1), 142. https://doi.org/10.3390/w12010142