Water Vapor from Western Eurasia Promotes Precipitation during the Snow Season in Northern Xinjiang, a Typical Arid Region in Central Asia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Study Area
2.1.2. Data Sources
2.2. Methods
2.2.1. HYSPLIT Method for the Water Vapor Simulation Scheme
2.2.2. Water Vapor Transport and Budget
2.2.3. Isotopic Water Vapor Tracing Method
2.2.4. Trend Test Method
3. Results
3.1. Precipitation Changes
3.2. The Climatology of Water Vapor Transport
3.3. Water Vapor Source Contributions to Precipitation
3.4. Auxiliary Evidence from the Stable Isotopes Method
3.5. Discussion of Precipitation Trend
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jones, P.D.; Moberg, A. Hemispheric and Large-Scale Surface Air Temperature Variations: An Extensive Revision and an Update to 2001. J. Clim. 2003, 16, 206–223. [Google Scholar] [CrossRef] [Green Version]
- Adler, R.F.; Gu, G.J.; Wang, J.J.; Huffman, G.J.; Curtis, S.; Bolvin, D. Relationships between global precipitation and surface temperature on interannual and longer timescales (1979–2006). J. Geophys. Res. -Atmos. 2008, 113, 15. [Google Scholar] [CrossRef]
- Wentz, F.J.; Ricciardulli, L.; Hilburn, K.; Mears, C. How much more rain will global warming bring? Science 2007, 317, 233–235. [Google Scholar] [CrossRef] [PubMed]
- Zolina, O.; Simmer, C.; Gulev, S.K.; Kollet, S. Changing structure of European precipitation: Longer wet periods leading to more abundant rainfalls. Geophys. Res. Lett. 2010, 37, 460–472. [Google Scholar] [CrossRef]
- Zhai, P.M.; Zhang, X.B.; Wan, H.; Pan, X.H. Trends in total precipitation and frequency of daily precipitation extremes over China. J. Clim. 2005, 18, 1096–1108. [Google Scholar] [CrossRef]
- Chen, B.; Xu, X.; Shi, X. Estimating the water vapor transport pathways and associated sources of water vapor for the extreme rainfall event over east of China in July 2007 using the Lagrangian method. Acta Meteorol. Sin. 2011, 69, 810–818. [Google Scholar]
- Huang, W.; Chen, F.; Feng, S.; Chen, J.; Zhang, X. Interannual precipitation variations in the mid-latitude Asia and their association with large-scale atmospheric circulation. Chin. Sci. Bull. 2013, 58, 3962–3968. [Google Scholar] [CrossRef] [Green Version]
- Lioubimtseva, E.; Henebry, G.M. Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations. J. Arid Environ. 2009, 73, 963–977. [Google Scholar] [CrossRef]
- Song, S.; Bai, J. Increasing Winter Precipitation over Arid Central Asia under Global Warming. Atmosphere 2016, 7, 139. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Zhang, C.; Hu, Q.; Tian, H. Temperature Changes in Central Asia from 1979 to 2011 Based on Multiple Datasets. J. Clim. 2014, 27, 1143–1167. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, M.; Crawford, J.; Hughes, C.E.; Du, M.; Liu, X. The effect of moisture source and synoptic conditions on precipitation isotopes in arid central Asia. J. Geophys. Res. -Atmos. 2017, 122, 2667–2682. [Google Scholar] [CrossRef]
- Sun, B.; Wang, H. Water Vapor Transport Paths and Accumulation during Widespread Snowfall Events in Northeastern China. J. Clim. 2013, 26, 4550–4566. [Google Scholar] [CrossRef]
- Kunkel, K.E.; Robinson, D.A.; Champion, S.; Yin, X.; Estilow, T.; Frankson, R.M. Trends and Extremes in Northern Hemisphere Snow Characteristics. Curr. Clim. Chang. Rep. 2016, 2, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Diem, J.E.; Brown, D.P. Tropospheric moisture and monsoonal rainfall over the southwestern United States. J. Geophys. Res. -Atmos. 2006, 111, 12. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Jiang, S.; Shi, Y.; Liu, Z.; Li, W.; Li, L. Impact of moisture source variation on decadal-scale changes of precipitation in North China from 1951 to 2010. J. Geophys. Res. -Atmos. 2017, 122, 600–613. [Google Scholar] [CrossRef]
- Li, L.; Dolman, A.J.; Xu, Z. Atmospheric Moisture Sources, Paths, and the Quantitative Importance to the Eastern Asian Monsoon Region. J. Hydrometeorol. 2016, 17, 637–649. [Google Scholar] [CrossRef]
- Pang, Z.; Kong, Y.; Froehlich, K.; Huang, T.; Yuan, L.; Li, Z.; Wang, F. Processes affecting isotopes in precipitation of an arid region. Tellus Ser. B-Chem. Phys. Meteorol. 2011, 63, 352–359. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhang, M.; Che, Y.; Chen, F.; Qiang, F. Contribution of recycled moisture to precipitation in oases of arid central Asia: A stable isotope approach. Water Resour. Res. 2016, 52, 3246–3257. [Google Scholar] [CrossRef] [Green Version]
- Yao, T.; Masson-Delmotte, V.; Gao, J.; Yu, W.; Yang, X.; Risi, C.; Sturm, C.; Werner, M.; Zhao, H.; He, Y.; et al. A review of climatic controls on Delta O-18 in precipitation over the tibetan plateau: Observations and Simulations. Rev. Geophys. 2013, 51, 525–548. [Google Scholar] [CrossRef]
- Gustafsson, M.; Rayner, D.; Chen, D. Extreme rainfall events in southern Sweden: Where does the moisture come from? Tellus Ser. A-Dyn. Meteorol. Oceanogr. 2010, 62, 605–616. [Google Scholar] [CrossRef]
- Guan, X.F.; Yang, L.M.; Zhang, Y.X.; Li, J.G. Spatial distribution, temporal variation, and transport characteristics of atmospheric water vapor over Central Asia and the arid region of China. Glob. Planet. Chang. 2019, 172, 159–178. [Google Scholar] [CrossRef]
- Baker, J. A cluster analysis of long range air transport pathways and associated pollutant concentrations within the UK. Atmos. Environ. 2010, 44, 563–571. [Google Scholar] [CrossRef]
- Cabello, M.; Orza, J.A.G.; Galiano, V. Air mass origin and its influence over the aerosol size distribution: A study in SE Spain. Adv. Sci. Res. 2008, 2, 47–52. [Google Scholar] [CrossRef]
- Draxier, R.R.; Hess, G.D. An overview of the HYSPLIT_4 modelling system for trajectories, dispersion and deposition. Aust. Meteorol. Mag. 1998, 47, 295–308. [Google Scholar]
- Yao, J.; Li, M.; Yang, Q. Moisture sources of a torrential rainfall event in the arid region of East Xinjiang, China, based on a Lagrangian model. Nat. Hazards 2018, 92, 183–195. [Google Scholar] [CrossRef]
- Brimelow, J.C.; Reuter, G.W. Transport of Atmospheric Moisture during Three Extreme Rainfall Events over the Mackenzie River Basin. J. Hydrometeorol. 2005, 6, 423–440. [Google Scholar] [CrossRef]
- Brubaker, K.L.; Dirmeyer, P.A.; Sudradjat, A.; Levy, B.S.; Bernal, F. A 36-yr Climatological Description of the Evaporative Sources of Warm-Season Precipitation in the Mississippi River Basin. J. Hydrometeorol. 2001, 2, 537. [Google Scholar] [CrossRef]
- Hu, Q.; Jiang, D.; Lang, X. Sources of moisture for different intensities of summer rainfall over the Chinese Loess Plateau during 1979–2009. Int. J. Climatol. 2018, 38, E1280–E1287. [Google Scholar] [CrossRef]
- Li, X.; Zhou, W.; Chen, Y.D. Detecting the Origins of Moisture over Southeast China: Seasonal Variation and Heavy Rainfall. Adv. Atmos. Sci. 2016, 33, 319–329. [Google Scholar] [CrossRef] [Green Version]
- Dai, X.; Li, W.; Ma, Z.; Wang, P. Water-vapor source shift of Xinjiang region during the recent twenty years. Prog. Nat. Sci. 2007, 17, 569–575. [Google Scholar]
- Sorg, A.; Bolch, T.; Stoffel, M.; Solomina, O.; Beniston, M. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nat. Clim. Chang. 2012, 2, 725–731. [Google Scholar] [CrossRef]
- Tian, L.; Yao, T.; MacClune, K.; White, J.W.C.; Schilla, A.; Vaughn, B.; Vachon, R.; Ichiyanagi, K. Stable isotopic variations in west China: A consideration of moisture sources. J. Geophys. Res.-Atmos. 2007, 112, D10. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.P.; Balmaseda, M.; Balsamo, G.; Engelen, R.; Simmons, A.J.; Thépaut, J.N. Toward a Consistent Reanalysis of the Climate System. Bull. Am. Meteorol. Soc. 2013, 95, 1235–1248. [Google Scholar] [CrossRef]
- Numaguti, A. Origin and recycling processes of precipitating water over the Eurasian continent: Experiments using an atmospheric general circulation model. J. Geophys. Res. -Atmos. 1999, 104, 1957–1972. [Google Scholar] [CrossRef]
- Zhang, C.; Tang, Q.; Chen, D. Recent Changes in the Moisture Source of Precipitation over the Tibetan Plateau. J. Clim. 2017, 30, 1807–1819. [Google Scholar] [CrossRef]
- Zhao, P.; Liangcheng, T.; Pu, Z.; Shengjie, W.; Buli, C.; Dong, L.; Gang, X.; Xing, C. Stable Isotopic Characteristics and Influencing Factors in Precipitation in the Monsoon Marginal Region of Northern China. Atmosphere 2019, 9, 97. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.D.; Mayer, B.; Norman, A.L.; Roy, H. Modelling of hydrogen and oxygen isotope compositions for local precipitation. Tellus Ser. B-Chem. Phys. Meteorol. 2005, 57, 273–282. [Google Scholar] [CrossRef]
- Wang, J.; Chen, F.; Jin, L.; Bai, H. Characteristics of the dry/wet trend over arid central Asia over the past 100 years. Clim. Res. 2010, 41, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Mohsin, T.; Gough, W.A. Trend analysis of long-term temperature time series in the Greater Toronto Area (GTA). Theor. Appl. Climatol. 2010, 101, 311–327. [Google Scholar] [CrossRef]
- Caves, J.K.; Winnick, M.J.; Graham, S.A.; Sjostrom, D.J.; Mulch, A.; Chamberlain, C.P. Role of the westerlies in Central Asia climate over the Cenozoic. Earth Planet. Sci. Lett. 2015, 428, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Cai, Z.; Tian, L. Atmospheric Controls on Seasonal and Interannual Variations in the Precipitation Isotope in the East Asian Monsoon Region. J. Clim. 2016, 29, 1339–1352. [Google Scholar] [CrossRef]
- Ruan, Y.; Liu, Z.; Yao, Z.; Wang, R. Temporal and Spatial Variations of Precipitation delta O-18 and Controlling Factors on the Pearl River Basin and Adjacent Regions. Adv. Meteorol. 2018, 2018, 1419326. [Google Scholar] [CrossRef]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Druhan, J.L.; Maher, K. The influence of mixing on stable isotope ratios in porous media: A revised Rayleigh model. Water Resour. Res. 2017, 53, 1101–1124. [Google Scholar] [CrossRef]
- Feng, F.; Li, Z.; Zhang, M.; Jin, S.; Dong, Z. Deuterium and oxygen 18 in precipitation and atmospheric moisture in the upper Urumqi River Basin, eastern Tianshan Mountains. Environ. Earth Sci. 2013, 68, 1199–1209. [Google Scholar] [CrossRef]
- Kong, Y.; Pang, Z. A positive altitude gradient of isotopes in the precipitation over the Tianshan Mountains: Effects of moisture recycling and sub-cloud evaporation. J. Hydrol. 2016, 542, 222–230. [Google Scholar] [CrossRef]
- Li, X.; Jiang, F.; Li, L.; Wang, G. Spatial and temporal variability of precipitation concentration index, concentration degree and concentration period in Xinjiang, China. Int. J. Climatol. 2011, 31, 1679–1693. [Google Scholar] [CrossRef]
- Han, X.; Xue, H.; Zhao, C.; Lu, D. The roles of convective and stratiform precipitation in the observed precipitation trends in Northwest China during 1961–2000. Atmos. Res. 2016, 169, 139–146. [Google Scholar] [CrossRef]
- Shi, Y.; Shen, Y.; Kang, E.; Li, D.; Ding, Y.; Zhang, G.; Hu, R. Recent and future climate change in northwest china. Clim. Chang. 2007, 80, 379–393. [Google Scholar] [CrossRef]
- Qian, W.; Lin, X. Regional trends in recent precipitation indices in China. Meteorol. Atmos. Phys. 2005, 90, 193–207. [Google Scholar] [CrossRef]
- Qian, W.H.; Qin, A. Precipitation division and climate shift in China from 1960 to 2000. Theor. Appl. Climatol. 2008, 93, 1–17. [Google Scholar] [CrossRef]
- Christensen, J.H.; Christensen, O.B. A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim. Chang. 2007, 81, 7–30. [Google Scholar] [CrossRef]
- Laederach, A.; Sodemann, H. A revised picture of the atmospheric moisture residence time. Geophys. Res. Lett. 2016, 43, 924–933. [Google Scholar] [CrossRef] [Green Version]
Station | Latitude (°N) | Longitude (°E) | Elevation (m, a.s.l) | Station | Latitude (°N) | Longitude (°E) | Elevation (m, a.s.l) |
---|---|---|---|---|---|---|---|
Habahe | 48.05 | 86.40 | 534.0 | Wenquan | 44.97 | 81.07 | 1353.9 |
Jimunai | 47.43 | 85.87 | 983.9 | Jinghe | 44.67 | 82.90 | 321.2 |
Buerjin | 47.70 | 86.87 | 473.9 | Wusu | 44.43 | 84.67 | 478.3 |
Fuhai | 47.13 | 87.47 | 502.0 | Wulanwusu | 44.28 | 85.87 | 469.0 |
Altay | 47.73 | 88.08 | 736.9 | Caijiahu | 44.20 | 87.53 | 441.0 |
Fuyun | 46.98 | 89.52 | 826.6 | Hutubi | 44.13 | 86.82 | 523.5 |
Tacheng | 46.73 | 83.00 | 536.6 | Qitai | 44.02 | 89.57 | 794.2 |
HEbukesaier | 46.78 | 85.72 | 1294.2 | Yining | 43.95 | 81.33 | 664.3 |
Qinghe | 46.67 | 90.38 | 1220.0 | Nileke | 43.80 | 82.57 | 1106.1 |
Alashan | 45.11 | 82.34 | 336.1 | Zhaosu | 43.15 | 81.13 | 1854.6 |
Bole | 44.90 | 82.07 | 532.9 | Urumqi | 43.78 | 87.67 | 918.7 |
Tuoli | 45.93 | 83.60 | 1077.7 | Urumqi Ceshi | 43.28 | 87.12 | 2355.6 |
Kelamayi | 45.62 | 84.85 | 449.5 | Tianchi | 43.88 | 88.12 | 1935.2 |
Beitashan | 45.37 | 90.53 | 1635.7 | Dabancheng | 43.35 | 88.32 | 1104.2 |
Data Name | Time Resolution | Sources |
---|---|---|
Meteorological station data in Northern Xinjiang | Daily | China National Meteorological Information Center |
Meteorological data of the upwind stations of Northern Xinjiang | Monthly | Research Institute of Hydrometeorological Information—World Data Centre |
NCEP reanalysis data | Daily | Air Resources Laboratory |
Era-Interim reanalysis data | Monthly | European Centre for Medium-Range Weather Forecasts |
Urumqi, ER, CL, CA, KR, AS, KH isotope data | Monthly | IAEA/WMO |
Altay isotope data | Tian et al., 2007 |
Water Vapor Source Region | Air Trajectory Number Ratio (%) | Water Vapor Contribution Ratio (%) |
---|---|---|
WE | 53.20 | 48.11 |
WA | 23.30 | 43.53 |
SB | 7.16 | 2.89 |
LA | 0.54 | 0.38 |
NP | 14.95 | 3.86 |
CEC | 0.85 | 1.23 |
Water Vapor Source Region | T Test | Sig. | Water Vapor Source Region | T Test | Sig. |
---|---|---|---|---|---|
WE | 0.075 | * | NP | 0.004 | ** |
WA | 0.001 | ** | LA | 0.107 | - |
SB | 0.181 | - | CEC | 0.611 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Li, H.; Wang, J.; Hao, X. Water Vapor from Western Eurasia Promotes Precipitation during the Snow Season in Northern Xinjiang, a Typical Arid Region in Central Asia. Water 2020, 12, 141. https://doi.org/10.3390/w12010141
Wang W, Li H, Wang J, Hao X. Water Vapor from Western Eurasia Promotes Precipitation during the Snow Season in Northern Xinjiang, a Typical Arid Region in Central Asia. Water. 2020; 12(1):141. https://doi.org/10.3390/w12010141
Chicago/Turabian StyleWang, Weiguo, Hongyi Li, Jian Wang, and Xiaohua Hao. 2020. "Water Vapor from Western Eurasia Promotes Precipitation during the Snow Season in Northern Xinjiang, a Typical Arid Region in Central Asia" Water 12, no. 1: 141. https://doi.org/10.3390/w12010141
APA StyleWang, W., Li, H., Wang, J., & Hao, X. (2020). Water Vapor from Western Eurasia Promotes Precipitation during the Snow Season in Northern Xinjiang, a Typical Arid Region in Central Asia. Water, 12(1), 141. https://doi.org/10.3390/w12010141