Long-Term (1986–2018) Evolution of Channel Bars in Response to Combined Effects of Cascade Reservoirs in the Middle Reaches of the Hanjiang River
Abstract
1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
3. Methods
3.1. Channel Bar Extraction Methods
3.2. Analytical Methods
4. Results
4.1. Long-Term Hydrologic Conditions
4.2. Channel Bar Area Evolution Trend at Spatiotemporal Scales
4.3. Long-Term Morphological Change of the Channel Bars
4.4. Correlation Analysis of Influencing Factors
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hooke, J.M.; Yorke, L. Channel bar dynamics on multi-decadal timescales in an active meandering river. Earth Surf. Proc. Land. 2011, 36, 1910–1928. [Google Scholar] [CrossRef]
- Graf, W.L. Downstream hydrologic and geomorphic effects of large dams on American rivers. Geomorphology 2006, 79, 336–360. [Google Scholar] [CrossRef]
- Grant, G.E. The Geomorphic response of gravel-bed rivers to dams: Perspectives and prospects. In Gravel Bed Rivers: Processes, Tools, Environments; Church, M.B.P., Roy, A., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2012. [Google Scholar]
- Skalak, K.J.; Benthem, A.J.; Schenk, E.R.; Hupp, C.R.; Galloway, J.M.; Nustad, R.A.; Wiche, G.J. Large dams and alluvial rivers in the anthropocene: The impacts of the Garrison and Oahe Dams on the Upper Missouri River. Anthropocene 2013, 2, 51–64. [Google Scholar] [CrossRef]
- Sanford, J.P. Dam Regulation Effects on Sand Bar Migration on the Missouri River: Southeastern South Dakota. Bachelor’s Thesis, University of Montana, Missoula, MT, USA, 2007. [Google Scholar]
- Schmutz, S.; Moog, O. Dams: Ecological impacts and management. In Riverine Ecosystem Management: Science for Governing Towards a Sustainable Future; Schmutz, S., Sendzimir, J., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 111–127. [Google Scholar]
- Hohensinner, S.; Hauer, C.; Muhar, S. River morphology, channelization, and habitat restoration. In Riverine Ecosystem Management: Science for Governing Towards a Sustainable Future; Schmutz, S., Sendzimir, J., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 41–65. [Google Scholar]
- Provansal, M.; Dufour, S.; Sabatier, F.; Anthony, E.J.; Raccasi, G.; Robresco, S. The geomorphic evolution and sediment balance of the lower Rhône River (southern France) over the last 130years: Hydropower dams versus other control factors. Geomorphology 2014, 219, 27–41. [Google Scholar] [CrossRef]
- Csiki, S.J.C.; Rhoads, B.L. Influence of four run-of-river dams on channel morphology and sediment characteristics in Illinois, USA. Geomorphology 2014, 206, 215–229. [Google Scholar] [CrossRef]
- Wang, B.; Xu, Y.J. Dynamics of 30 large channel bars in the Lower Mississippi River in response to river engineering from 1985 to 2015. Geomorphology 2018, 300, 31–44. [Google Scholar] [CrossRef]
- Wang, B.; Xu, Y.J. Decadal-scale riverbed deformation and sand budget of the last 500 km of the Mississippi River: Insights into natural and river engineering effects on a large alluvial river. J. Geophys. Res. Earth Surf. 2018, 123, 874–890. [Google Scholar] [CrossRef]
- Capolongo, D.; Refice, A.; Bocchiola, D.; D’Addabbo, A.; Vouvalidis, K.; Soncini, A.; Zingaro, M.; Bovenga, F.; Stamatopoulos, L. Coupling multitemporal remote sensing with geomorphology and hydrological modeling for post flood recovery in the Strymonas dammed river basin (Greece). Sci. Total Environ. 2019, 651, 1958–1968. [Google Scholar] [CrossRef]
- Jia, D.; Shao, X.; Zhang, X.; Lu, Y.; Hei, P. Morphological responses in a meandering and island-braided reach of the Middle Yangtze River to the Three Gorges Reservoir impoundment. Int. J. Sediment Res. 2016, 31, 131–138. [Google Scholar] [CrossRef]
- Lou, Y.; Mei, X.; Dai, Z.; Jie, W.; Wen, W. Evolution of the mid-channel bars in the middle and lower reaches of the Changjiang (Yangtze) River from 1989 to 2014 based on the Landsat satellite images: Impact of the Three Gorges Dam. Environ. Earth Sci. 2018, 77, 394. [Google Scholar] [CrossRef]
- Shi, H.; Gao, C.; Dong, C.; Xia, C.; Xu, G. Variation of river islands around a large city along the Yangtze River from satellite remote sensing images. Sensors 2017, 17, 2213. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.Y.; Ding, L.; Li, J.Z.; Qian, H.M.; Huang, M.T.; Xu, N. Monitoring temporal change of river islands in the Yangtze River by remotely sensed data. Water 2018, 10, 17. [Google Scholar] [CrossRef]
- Wang, J.; Dai, Z.; Mei, X.; Lou, Y.; Wei, W.; Ge, Z. Immediately downstream effects of Three Gorges Dam on channel sandbars morphodynamics between Yichang-Chenglingji Reach of the Changjiang River, China. J. Geogr. Sci. 2018, 28, 629–646. [Google Scholar] [CrossRef]
- Wen, Z.; Yang, H.; Ding, C.; Zhang, C.; Shao, G.; Chen, J.; Lv, M.; Wu, S.; Shao, Z. Three-decadal dynamics of mid-channel bars in downstream of the Three Gorges Dam, China. Hydrol. Earth Syst. Sci. 2019, 1–29. [Google Scholar] [CrossRef]
- Wang, Z.; Li, H.; Cai, X. Remotely sensed analysis of channel bar morphodynamics in the middle Yangtze River in response to a major monsoon flood in 2002. Remote Sens. 2018, 10, 1165. [Google Scholar] [CrossRef]
- Zhou, M.; Xia, J.; Lu, J.; Deng, S.; Lin, F. Morphological adjustments in a meandering reach of the middle Yangtze River caused by severe human activities. Geomorphology 2017, 285, 325–332. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, J.; Li, C.Y.; Wang, X.C.; Wang, D.W. Understanding the hydropower exploitation’s hydrological impacts through a len of change in flow-sediment relationship: A case study in the Han River Basin, China. Ecol. Eng. 2019, 129, 82–96. [Google Scholar] [CrossRef]
- Zhang, H.X.; Zhang, X.F.; Wang, X.H.; Wu, Q.S.; Zhao, Y.J. Scouring characteristics of downstream channel after operation of Danjiangkou Reservoir. J. Yangtze River Sci. Res. Inst. 2008, 25, 19–22. [Google Scholar]
- Xu, J.X. Complex behaviour of suspended sediment grain size downstream from a reservoir: An example from the Hanjiang River, China. Hydrol. Sci. J. 1996, 41, 837–849. [Google Scholar]
- Xu, J.X. Study of sedimentation zones in a large sand-bed braided river: An example from the Hanjiang River of China. Geomorphology 1997, 21, 153–165. [Google Scholar]
- Xu, J.X. Wandering braided river channel pattern developed under quasi-equilibrium: An example from the Hanjiang River, China. J. Hydrol. 1996, 181, 85–103. [Google Scholar] [CrossRef]
- Xu, J.X. Evolution of mid-channel bars in a braided river and complex response to reservoir construction: An example from the middle Hanjiang River, China. Earth Surf. Proc. Land. 1997, 22, 953–965. [Google Scholar]
- Liu, H.; Wu, J.; Liao, M. Ecosystem service trade-offs upstream and downstream of a dam: A case study of the Danjiangkou dam, China. J. Geosci. 2019, 12, 17. [Google Scholar] [CrossRef]
- Lu, X.; Zhuang, Y.; Wang, X.; Yang, Q. Assessment of Streamflow Change in Middle-Lower Reaches of the Hanjiang River. J. Hydrol. Eng. 2018, 23, 05018024. [Google Scholar] [CrossRef]
- Song, X.; Zhuang, Y.; Wang, X.; Li, E. Combined effect of Danjiangkou Reservoir and cascade reservoirs on hydrologic regime downstream. J. Hydrol. Eng. 2018, 23, 05018008. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Lin, Y.F. Observation and Study on Sediment Deposition and Channel Bed Evolution of the Danjiangkou Reservoir; Changjiang Press: Wuhan, China, 2012. [Google Scholar]
- Zhang, J.; Sun, M.; Deng, Z.; Jing, L.; Wang, D.; Lu, C.; Liu, X. Runoff and sediment response to cascade hydropower exploitation in the middle and lower Han River, China. Math. Probl. Eng. 2017, 2017, 1–15. [Google Scholar] [CrossRef]
- Chang, J.; Wang, X.; Li, Y.; Wang, Y.; Zhang, H. Hydropower plant operation rules optimization response to climate change. Energy 2018, 160, 886–897. [Google Scholar] [CrossRef]
- Yu, Q.; Tu, Z.; Yu, G.; Xu, L.; Yang, D.; Yang, Y. Modelling the crop water-satisfied degree on the grid scale: A CropWRA model and the case study of Hanjiang River Basin, China. Agric. For. Meteorol. 2018, 262, 215–226. [Google Scholar] [CrossRef]
- Lin, Y.F. Recent scouring in the middle stream of Hanjiang River. J. Yangtze River Sci. Res. Inst. 2015, 32, 1–5. [Google Scholar]
- Lu, X.; Wang, X.; Yang, C.; Liu, X.; Qing, Y. Changes and driving forces of the water-sediment relationship in the middle reaches of the Hanjiang River. Water 2018, 10, 887. [Google Scholar] [CrossRef]
- Feng, G.Y.; Yang, H.F.; Zhao, C.H. Sediment environmental change and the health of the Hanjiang River. In Proceedings of the National Symposium on Basic Theory of Sediment, Zhengzhou, China, 1 November 2005. [Google Scholar]
- Wen, W.; Li, T.; Han, L. Analysis of influence of water environment on development of hydropower cascade downstream of the Hanjiang River. J. Environ. Eng. Technol. 2016, 6, 259–265. [Google Scholar]
- Ping, G.; Jian-rong, W. Preliminary Analysis of Effects of Comprehensive Development of Cascade Hydropower Project on River Course; Hydropower: London, UK, 2006; pp. 1465–1471. [Google Scholar]
- Ma, F.K.; Li, X.F.; Yin, W.Q.; Wang, Y.K. Study on the improving effect of cascade development on shipping in the middle and lower reaches of the Hanjiang River. China Water Transp. 2014, 14, 34–35. [Google Scholar]
- Zhang, H.; Gorelick, S.M.; Zimba, P.V.; Zhang, X. A remote sensing method for estimating regional reservoir area and evaporative loss. J. Hydrol. 2017, 555, 213–227. [Google Scholar] [CrossRef]
- Du, Z.; Linghu, B.; Ling, F.; Li, W.; Tian, W.; Wang, H.; Gui, Y.; Sun, B.; Zhang, X. Estimating surface water area changes using time-series Landsat data in the Qingjiang River Basin, China. J. Appl. Remote Sens. 2012, 6, 063609. [Google Scholar] [CrossRef]
- Li, W.; Du, Z.; Ling, F.; Zhou, D.; Wang, H.; Gui, Y.; Sun, B.; Zhang, X. A comparison of land surface water mapping using the normalized difference water index from TM, ETM plus and ALI. Remote Sens. 2013, 5, 5530–5549. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Li, W.; Qin, Y.; Sun, Y.; Huang, H.; Ling, F.; Tian, L.; Ding, Y. Estimating the relationship between dam water level and surface water area for the Danjiangkou Reservoir using Landsat remote sensing images. Remote Sens. Lett. 2016, 7, 121–130. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Cavadias, G. Power of the Mann–Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J. Hydrol. 2002, 259, 254–271. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Govindarajulu, Z. Rank correlation methods (5th ed.). Technometrics 1992, 34, 108. [Google Scholar] [CrossRef]
- Pirnia, A.; Golshan, M.; Darabi, H.; Adamowski, J.; Rozbeh, S. Using the Mann–Kendall test and double mass curve method to explore stream flow changes in response to climate and human activities. J. Water Clim. Chang. 2019, 10, 725–742. [Google Scholar] [CrossRef]
- Petts, G.E. Complex response of river channel morphology subsequent to reservoir construction. Prog. Phys. Geogr. 1979, 3, 329–362. [Google Scholar] [CrossRef]
- Hecht, J.S.; Lacombe, G.; Arias, M.E.; Dang, T.D.; Piman, T. Hydropower dams of the Mekong River basin: A review of their hydrological impacts. J. Hydrol. 2019, 568, 285–300. [Google Scholar] [CrossRef]
- Qian, B.; Zhang, D.; Wang, J.; Huang, F.; Wu, Y. Impacts of reservoirs on the streamflow and sediment load of the Hanjiang River, China. Environ. Monit. Assess. 2016, 188, 646. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.H. Analysis of channel bed evolution and preliminary exploration of regulation principles in wandering reaches of the Hanjiang River. Port. Waterway Eng. 1991, 27–33. Available online: http://www.cnki.com.cn/Article/CJFDTotal-SYGC199112006.htm (accessed on 30 December 2019).
- Yang, S.; Zhang, J.; Zhu, J.; Smith, J.; Yang, C. Impact of dams on Yangtze River sediment supply to the sea and delta intertidal wetland response. J. Geophys. Res. Earth Surf. 2005, 110. [Google Scholar] [CrossRef]
- Li, J.; Dong, S.; Liu, S.; Yang, Z.; Peng, M.; Zhao, C. Effects of cascading hydropower dams on the composition, biomass and biological integrity of phytoplankton assemblages in the middle Lancang-Mekong River. Ecol. Eng. 2013, 60, 316–324. [Google Scholar] [CrossRef]
- Sun, C.; Wu, H.J. Effect of water diversion and cascade development on water environmental capacity of the Hanjiang River in Xiangyang. Environ. Prot. Sci. 2013, 39, 9–12. [Google Scholar]
- Nkongolo, N.V.; Plassmeyer, C.J. Effect of vegetation type on soil physical properties at Lincoln University Living Laboratory. Res. J. For. 2010, 4, 1–13. [Google Scholar] [CrossRef]
- Eni, D.D.; Iwara, A.I.; Offiong, R.A. Analysis of soil-vegetation interrelationships in a south-southern secondary forest of Nigeria. Int. J. For. Res. 2012, 2012, 8. [Google Scholar] [CrossRef][Green Version]
- Chen, H. Remote Sensing of the Land Desertification in the Middle Reaches of Hanjiang River Valley Plain. Ph.D. Thesis, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan, China, 2013. [Google Scholar]
- Gurnell, A.M.; Grabowski, R.C. Vegetation–hydrogeomorphology interactions in a low-energy, human-impacted river. River Res. Appl. 2016, 32, 202–215. [Google Scholar] [CrossRef]
- Picco, L.; Comiti, F.; Mao, L.; Tonon, A.; Lenzi, M.A. Medium and short term riparian vegetation, island and channel evolution in response to human pressure in a regulated gravel bed river (Piave River, Italy). Catena 2017, 149, 760–769. [Google Scholar] [CrossRef]
- Hudson, P.F.; van der Hout, E.; Verdaasdonk, M. (Re)Development of fluvial islands along the lower Mississippi River over five decades, 1965–2015. Geomorphology 2019, 331, 78–91. [Google Scholar] [CrossRef]
- Li, F.; Zhong, D.P. Functions and effects of dam structures in regulating wandering reach. Port Waterway Eng. 2002, 31–33, 40. [Google Scholar]
- Lei, P.C.; Zhang, Y.G. Achievements and considerations of Hanjiang Waterway Regulation Project. China Water Transp. 1996, 13–15. Available online: http://www.cnki.com.cn/Article/CJFDTotal-ZHOG611.003.htm (accessed on 30 December 2019).
- Mueller, E.R.; Grams, P.E.; Hazel, J.E.; Schmidt, J.C. Variability in eddy sandbar dynamics during two decades of controlled flooding of the Colorado River in the Grand Canyon. Sediment. Geol. 2018, 363, 181–199. [Google Scholar] [CrossRef]
- Yuill, B.T.; Gaweesh, A.; Allison, M.A.; Meselhe, E.A. Morphodynamic evolution of a lower Mississippi River channel bar after sand mining. Earth Surf. Proc. Land. 2016, 41, 526–542. [Google Scholar] [CrossRef]
Reservoir | Normal Storage Level (m a.s.l.) * | Distance from Danjiangkou Dam (km) | Regulation Ability | Normal Capacity (million m3) | Year Constructed |
---|---|---|---|---|---|
Danjiangkou | 157.0 | 0.0 | year | 17,450 | 1973 |
170.0 | 0.0 | Multi-year | 29,050 | 2013 | |
Wangfuzhou | 86.2 | 30.0 | Danjiangkou reservoir reverse regulation | 149.5 | 2000 |
Xinji | 76.2 | 89.7 | day | 301.2 | under construction |
Cuijiaying | 62.7 | 134.0 | day | 245.0 | 2010 |
Yakou | 55.2 | 201.0 | day | 608.0 | under construction |
Nianpanshan | 49.2 | 263.0 | - | 877.0 | under construction |
124/38 | 125/38 | ||||
---|---|---|---|---|---|
Data Source | Date | Water Level (m a.s.l.) | Data Source | Date | Water Level (m a.s.l.) |
Landsat-5 TM | 3 December 1986 | 88.09 | Landsat-5 TM | 10 December 1986 | 87.79 |
Landsat-5 TM | 7 November 1994 | - | Landsat-5 TM | 2 February 1995 | 88.01 |
Landsat-5 TM | 23 November 2000 | 89.03 | Landsat-7 ETM+ | 24 December 2000 | 88.82 |
Landsat-5 TM | 18 November 2004 | 88.89 | Landsat-5 TM | 8 October 2004 | 88.86 |
Landsat-5 TM | 5 December 2010 | 88.68 | Landsat-5 TM | 26 November 2010 | 88.53 |
Landsat-8 OLI | 29 December 2013 | 88.7 | Landsat-8 OLI | 4 December 2013 | 88.73 |
Landsat-8 OLI | 26 February 2018 | 88.83 | Landsat-8 OLI | 21 March 2018 | 88.91 |
Sensor | Band | Wavelength (μm) |
---|---|---|
Landsat-5 TM | B2(Green) | 0.52–0.60 |
B5(SWIR) | 1.55–1.75 | |
Landsat-7 ETM+ | B2(Green) | 0.53–0.61 |
B5(SWIR) | 1.55–1.75 | |
Landsat-8 OLI | B3(Green) | 0.53–0.59 |
B6(SWIR1) | 1.57–1.65 |
Hydrological Station | Pre-Dam (1950–1958) | Flood Retention (1959–1967) | Impoundment (1968–2018) | 1986–1994 | 1995–2000 | 2001–2010 | 2011–2018 |
---|---|---|---|---|---|---|---|
Huangjiagang | 2.92 | 1.7 | 0.03 | 0.01 | 0.01 | 0.01 | 0.04 |
Huangzhuang | 2.62 | 1.69 | 0.27 | 0.23 | 0.2 | 0.15 | 0.07 |
Factors | Z Statistic | Sig. Level | A | |
---|---|---|---|---|
water level | Huangjiagang | 4.08 | 0.01 | 0.04 |
Xiangyang | 2.22 | 0.05 | 0.12 | |
Huangzhuang | −4.29 | 0.01 | −0.06 | |
runoff | Huangjiagang | 1.69 | 0.1 | 7.17 |
Huangzhuang | −0.29 | >0.1 | 2.19 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Cai, X.; Yang, C.; Li, E.; Song, X.; Ban, X. Long-Term (1986–2018) Evolution of Channel Bars in Response to Combined Effects of Cascade Reservoirs in the Middle Reaches of the Hanjiang River. Water 2020, 12, 136. https://doi.org/10.3390/w12010136
Zhang Y, Cai X, Yang C, Li E, Song X, Ban X. Long-Term (1986–2018) Evolution of Channel Bars in Response to Combined Effects of Cascade Reservoirs in the Middle Reaches of the Hanjiang River. Water. 2020; 12(1):136. https://doi.org/10.3390/w12010136
Chicago/Turabian StyleZhang, Yingying, Xiaobin Cai, Chao Yang, Enhua Li, Xinxin Song, and Xuan Ban. 2020. "Long-Term (1986–2018) Evolution of Channel Bars in Response to Combined Effects of Cascade Reservoirs in the Middle Reaches of the Hanjiang River" Water 12, no. 1: 136. https://doi.org/10.3390/w12010136
APA StyleZhang, Y., Cai, X., Yang, C., Li, E., Song, X., & Ban, X. (2020). Long-Term (1986–2018) Evolution of Channel Bars in Response to Combined Effects of Cascade Reservoirs in the Middle Reaches of the Hanjiang River. Water, 12(1), 136. https://doi.org/10.3390/w12010136