System Dynamics Approach for Assessing the Behaviour of the Lim Reservoir System (Serbia) under Changing Climate Conditions
Abstract
:1. Introduction
1.1. System Dynamics Simulation Approach for the Climate Change Impacts Assessment
1.2. System Dynamics Simulation Modelling Processes and Its Uncertainty
1.3. The Goals of the Study
2. Lim Water System
3. System Dynamics Simulation Model of the Lim Water System
3.1. General Approach
3.2. The System Dynamics Simulation Model
3.2.1. Reservoir Operations
3.2.2. System Dynamics Simulation Model of the Lim Water System
4. Uncertainty Assessment within the Climate Change Impact Analysis Process
5. Results and Discussion
5.1. Model Verification
5.2. Future Projections
5.3. Uncertainty Assessment
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Simonovic, S.P. Managing Water Resources: Methods and Tools for a Systems Approach; UNSECO Publishing: Paris, France; Earthscan James & James: London, UK, 2009. [Google Scholar]
- Oni, S.K.; Dillon, P.J.; Metcalfe, R.A.; Futter, N.N. Dynamic Modelling of the Impact of Climate Change and Power Flow Management Options using STELLA: Application to the Steephill Falls Reservoir, Ontario, Canada. Can. Water Resour. J. 2012, 37, 125–148. [Google Scholar] [CrossRef] [Green Version]
- Teegavarapu, R.; Simonovic, S.P. Object Oriented Simulation of Multiple Hydropower Reservoir Operations using System Dynamics Approach. Water Resour. Manag. 2014, 28, 1937–1958. [Google Scholar] [CrossRef]
- Hollermann, B.; Evers, M. Coping with uncertainty in water management: Qualitative system analysis as a vehicle to visualize the plurality of practitioners’ uncertainty handling routines. J. Environ. Manag. 2019, 235, 213–223. [Google Scholar] [CrossRef] [PubMed]
- EEA Climate Impacts on Water Resources; European Environment Agency: Copenhagen, Denmark, 2017.
- Ehsani, N.; Vorosmarty, C.J.; Fekete, B.M.; Stakhiv, E.Z. Reservoir operations under climate change: Storage capacity options to mitigate risk. J. Hydrol. 2017, 555, 435–446. [Google Scholar] [CrossRef]
- International Commission for the Protection of the Danube River (ICPDR). Danube Study—Climate Change Adaptation, Final Report; International Commission for the Protection of the Danube River: Vienna, Austria, 2012. [Google Scholar]
- Mandal, S.; Arunkumar, R.; Breach, P.A.; Simonovic, S.P. Reservoir Operations under Changing Climate Conditions: Hydropower-Production Perspective. J. Water Resour. Plan. Manag. 2019, 145, 04019016. [Google Scholar] [CrossRef]
- Arsenault, R.; Brissette, F.; Malo, J.S.; Minville, M.; Leconte, R. Structural and Non-Structural Climate Change Adaptation Strategies for the Péribonka Water Resource System. Water Resour. Manag. 2013, 27, 2075–2087. [Google Scholar] [CrossRef]
- Haguma, D.; Leconte, R.; Côté, P.; Krau, S.; Brissette, F. Optimal Hydropower Generation Under Climate Change Conditions for a Northern Water Resources System. Water Resour. Manag. 2017, 28, 4631–4644. [Google Scholar] [CrossRef]
- Ahmadi, M.; Haddad, O.B.; Loáiciga, H.A. Adaptive Reservoir Operation Rules Under Climatic Change. Water Resour. Manag. 2015, 29, 1247–1266. [Google Scholar] [CrossRef]
- Burn, H.D.; Simonovic, S.P. Sensitivity Of Reservoir Operation Performance To Climatic Change. Water Resour. Manag. 1996, 6, 463–478. [Google Scholar] [CrossRef]
- Mandal, S. Uncertainty Modeling in The Assessment of Climate Change Impacts on Water Resources Management. Ph.D. Thesis, University of Western Ontario, London, ON, Canada, 2017. [Google Scholar]
- Goharian, E.; Zahmatkesh, Z.; Sandoval-Solis, S. Uncertainty Propagation of Hydrologic Modeling in Water Supply System Performance: Application of Markov Chain Monte Carlo Method. J. Hydrol. Eng. 2018, 23, 04018013. [Google Scholar] [CrossRef]
- Gaur, A.; Simonovic, S.P. Towards Reducing Climate Change Impact Assessment Process Uncertainty. Environ. Process. J. 2015, 2, 275–290. [Google Scholar] [CrossRef] [Green Version]
- Poulin, A.; Brissette, F.; Leconte, R.; Arsenault, R.; Malo, J.S. Uncertainty of hydrological modelling in climate change impact studies in a Canadian, snow-dominated river basin. J. Hydrol. 2011, 409, 626–636. [Google Scholar] [CrossRef]
- Das, J.; Treesa, A.; Umamahesh, N. Modelling Impacts of Climate Change on a River Basin: Analysis of Uncertainty Using REA & Possibilistic Approach. Water Resour. Manag. 2018, 32, 4833–4852. [Google Scholar]
- Joseph, J.; Ghosh, S.; Pathak, A.; Sahai, A.K. Hydrologic impacts of climate change: Comparisons between hydrological parameter uncertainty and climate model uncertainty. J. Hydrol. 2018, 566, 1–12. [Google Scholar] [CrossRef]
- Support to Water Resources Management in the Drina River Basin; World Bank: Washington, DC, USA, 2019. Available online: http://www.wb-drinaproject.com/index.php/en/ (accessed on 4 August 2019).
- Reichl, F.; Hack, J. Derivation of Flow Duration Curves to Estimate Hydropower Generation Potential in Data-Scarce Regions Data-Scarce Regions. Water 2017, 9, 572. [Google Scholar] [CrossRef]
- Institute for the Development of Water Resources Jaroslav Cerni. Water Resource Management Plan of Montenegro WRMPM; Institute for the Development of Water Resources Jaroslav Cerni: Belgrade, Serbia, 2001. [Google Scholar]
- Institute for the Development of Water Resources Jaroslav Cerni. Water Resource Management Plan of Serbia WRMPS; Institute for the Development of Water Resources Jaroslav Cerni: Belgrade, Serbia, 2010. [Google Scholar]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Teutschbeina, C.; Seibert, J. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol. 2012, 456, 12–29. [Google Scholar] [CrossRef]
- Piani, C.; Haerter, J.O.; Coppola, E. Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol. 2010, 99, 187–192. [Google Scholar] [CrossRef]
- Cannon, A.J.; Sobie, S.R.; Murdock, T.Q. Bias Correction of GCM Precipitation by Quantile Mapping: How Well Do Methods Preserve Changes in Quantiles and Extremes? J. Clim. 2015, 28, 6938–6959. [Google Scholar] [CrossRef]
- Mani, A.; Tsai, F.T.C. Ensemble Averaging Methods for Quantifying Uncertainty Sources in Modeling Climate Change Impact on Runoff Projection. J. Hydrol. Eng. 2016, 22, 04016067. [Google Scholar] [CrossRef]
- Bates, J.M.; Granger, C.W.J. The combination of forecasts. Oper. Res. Q. 1969, 20, 451–468. [Google Scholar] [CrossRef]
- Scharffenberg, W. Hydrological Modelling System; HEC-HMS: US Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Centre: Davis, CA, USA, 2016. [Google Scholar]
- Azmat, M.; Qamar, M.U.; Huggel, C.; Hussain, E. Future climate and cryosphere impacts on the hydrology of a scarcely gauged catchment on the Jhelum river basin, Northern Pakistan. Sci. Total Environ. 2018, 639, 961–976. [Google Scholar] [CrossRef] [PubMed]
- Annex 1. Development of the Hydrologic Model for the Sava River Basin. In Water Climate and Adaptation Plan for the Sava River Basin; Final Report; World Bank: Washington, DC, USA, 2015; Available online: http://documents.worldbank.org/curated/en/111101468188370674/Annex-one-development-of-the-hydrologic-model-for-the-Sava-river-basin (accessed on 4 August 2019).
- Vensim Reference Manual Version: 7.3; VENTANA System Inc.: Tucson, AZ, USA. Available online: https://vensim.com/docs/ (accessed on 9 July 2019).
- Loucks, D.P.; Beek, E. Water Resources Systems Planning and Management: An Introduction to Methods, Models and Applications; Deltares and UNESCO-IHE: Delft, The Netherlands, 2017. [Google Scholar]
- Brouwer, C.; Heibloem, M. Irrigation Water Management: Irrigation Water Needs; The International Institute for Land Reclamation and Improvement: Rome, Italy, 1986. [Google Scholar]
- Wilby, R.L.; Harris, I. A framework for assessing uncertainties in climate change impacts: Low-flow scenarios for the River Thames, U.K. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef]
- Bastola, S.; Murphy, C.; Fealy, R. Generating probabilistic estimates of hydrological response for Irish catchments using a weather generator and probabilistic climate change scenarios. Hydrol. Process. 2012, 26, 2307–2321. [Google Scholar] [CrossRef]
- Yuan, F.; Chun, K.P.; Sapriza-Azuri, G.; Bruen, M.; Wheater, H.S. Assessing the relative importance of parameter and forcing uncertainty and their interactions in conceptual hydrological model simulations. J. Hydrol. 2017, 554, 434–450. [Google Scholar] [CrossRef]
- Ranzani, A.; Bonato, M.; Patro, E.R.; Gaudard, L.; Michele, C.D. Hydropower Future: Between Climate Change, Renewable Deployment, Carbon and Fuel Prices. Water 2017, 10, 1197. [Google Scholar] [CrossRef]
- Chai, Y.; Li, Y.T.; Yang, Y.P.; Zhu, B.Y.; Li, S.X.; Xu, C.; Liu, C.C. Influence of Climate Variability and Reservoir Operation on Streamflow in the Yangtze River. Sci. Rep. 2019, 9, 5060. [Google Scholar] [CrossRef]
- Markstrom, S.L.; Regan, R.S.; Hay, L.E.; Viger, R.J.; Webb, R.M.T.; Payn, R.A.; LaFontaine, J.H. PRMS-IV, the Precipitation-Runoff Modeling System; Version 4; Geological Survey: Reston, VA, USA, 2015. [Google Scholar]
- SWAT: Soil & Water Assessment Tool. Available online: https://swat.tamu.edu/ (accessed on 2 June 2019).
Reservoirs | Year Built | Drainage Area (km2) | Annual Inflows (m3/s) | Active Volume (106m3) | Maximal Operational Level (m.a.s.l.) | Minimal Operational Level (m.a.s.l.) | Spillway Capacity (m3/s) | Spillway Crest Elevation (m.a.s.l.) |
---|---|---|---|---|---|---|---|---|
Potpec | 1967 | 3605 | 79.9 | 19.8 | 437 | 423.6 | 3000 | 439 |
Uvac | 1979 | 920 | 9.5 | 160 | 988 | 940 | 1050 | 986 |
Kokin Brod | 1962 | 1170 | 13 | 209 | 888 | 845 | 1400 | 885.5 |
Radojnja | 1959 | 1331 | 13.5 | 4.1 | 815 | 805 | 1400 | 816.2 |
Hydropower Plant | Type | Number of Turbines | Maximal Discharge (m3/s) | Instaled Power (MW) | Annual Energy Generation (GWh) | Maximal Water Head (m) | Minimal Water Head (m) |
---|---|---|---|---|---|---|---|
Potpec | Non-diversion | 3 | 165 | 52 | 216 | 38.4 | 25.6 |
Uvac | Non-diversion | 1 | 43 | 36 | 72 | 100 | 55 |
Kokin Brod | Non-diversion | 2 | 37.4 | 21.4 | 60 | 73 | - |
Radojnja | Diversion | 2 | 36 | 103 | 370 | 378 | 345 |
Emissions Scenarios | Uvac HPP | Kokin Brod HPP | Bistrica HPP | Potpec HPP |
---|---|---|---|---|
RCP 2.6 | −3.5 | −1.6 | −1.8 | +2.7 |
RCP 4.5 | +8.1 | +17.9 | +15.3 | −3.0 |
RCP 8.5 | −0.7 | −1.0 | −2.4 | −7.9 |
Modelling Steps | Uncertainty within the Different Processes (%) | ||
---|---|---|---|
Inflows | Outflows | Hydropower Generation | |
RCMs | 44.7 | 45.7 | 40.6 |
BCMs | 49.0 | 49.2 | 53.5 |
CSs | 6.3 | 5.0 | 5.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stojkovic, M.; Simonovic, S.P. System Dynamics Approach for Assessing the Behaviour of the Lim Reservoir System (Serbia) under Changing Climate Conditions. Water 2019, 11, 1620. https://doi.org/10.3390/w11081620
Stojkovic M, Simonovic SP. System Dynamics Approach for Assessing the Behaviour of the Lim Reservoir System (Serbia) under Changing Climate Conditions. Water. 2019; 11(8):1620. https://doi.org/10.3390/w11081620
Chicago/Turabian StyleStojkovic, Milan, and Slobodan P. Simonovic. 2019. "System Dynamics Approach for Assessing the Behaviour of the Lim Reservoir System (Serbia) under Changing Climate Conditions" Water 11, no. 8: 1620. https://doi.org/10.3390/w11081620