Modelling Actual and Future Seawater Intrusion in the Variconi Coastal Wetland (Italy) Due to Climate and Landscape Changes
Abstract
:1. Introduction
2. Study Area
3. Material and Methods
3.1. Data Collection
3.2. Statigraphy of the Area
3.3. Three-Dimensional Flow Model Set up
4. Results and Discussion
4.1. Climate and Landscape Changes
4.2. Stratigraphic and Geomorphological Setting
4.3. Numerical Model Results
4.4. Scenario Model Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chang, C.M.; Yeh, H.D. Spectral approach to seawater intrusion in heterogeneous coastal aquifers. Hydrol. Earth Syst. Sci. 2010, 14, 719–727. [Google Scholar] [CrossRef] [Green Version]
- Werner, A.D.; Bakker, M.; Post, V.E.A.; Vandenbohede, A.; Lu, C.; Ataie-Ashtiani, B.; Simmons, C.T.; Barry, D.A. Seawater intrusion processes, investigation and management: Recent advances and future challenges. Adv. Water Resour. 2013, 51, 3–26. [Google Scholar] [CrossRef]
- Li, X.Y.; Bill, X.H.; Burnett, W.C.; Santos, I.R.; Chanton, J.P. Submarine groundwater discharge driven by tidal pumping in a heterogeneous aquifer. GroundWater 2009, 47, 558–568. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Hu, B.X. Development of a discrete-continuum VDFST-CFP numerical model for simulating seawater intrusion to a coastal karst aquifer with a conduit system. Water Resour. Res. 2017, 52, 688–711. [Google Scholar] [CrossRef]
- Xu, Z.; Hu, B.; Hu, X.; Ye, M. Numerical modeling and sensitivity analysis of seawater intrusion in a heterogeneous coastal karst aquifer with conduits. Hydrol. Earth Syst. Sci. 2018, 22, 1–19. [Google Scholar] [CrossRef]
- Rajabi, M.M.; Ataie-Ashtiani, B.; Simmons, C.T. Polynomial chaos expansions for uncertainty propagation and moment independent sensitivity analysis of seawater intrusion simulations. J. Hydrol. 2015, 520, 101–122. [Google Scholar] [CrossRef]
- Diersch, H.J.G. FEFLOW: Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media; Springer Science & Business Media: New York, NY, USA, 2014; pp. 1–996. [Google Scholar] [CrossRef]
- Guo, W.; Langevin, C.D. User’s Guide to SEAWAT: A Computer Program for Simulation of Three-Dimensional Variable-Density Groundwater Flow; USGS: Reston, VA, USA, 2002.
- Langevin, C.D.; Shoemaker, W.B.; Guo, W. MODFLOW-2000, the U.S. Geological Survey Modular Ground-Water Model: Documentation of the SEAWAT-2000 Version with Variable Density Flow Process (VDF) and the Integrated MT3DMS Transport Process (IMT); USGS: Reston, VA, USA, 2003.
- Voss, C.I.; Provost, A.M. SUTRA, a Model for Saturated–Unsaturated Variable Density Ground-Water Flow with Energy or Solute Transport; USGS: Reston, VA, USA, 2002.
- Pholkern, K.; Saraphirom, P.; Srisuk, K. Potential impact of climate change on groundwater resources in the central Huai Luang basin, northeast Thailand. Sci. Tot. Environ. 2018, 633, 1518–1535. [Google Scholar] [CrossRef] [PubMed]
- Colombani, N.; Osti, A.; Volta, G.; Mastrocicco, M. Impact of climate change on salinization of coastal water resources. Water Resour. Manag. 2016, 30, 2483–2496. [Google Scholar] [CrossRef]
- De Filippis, G.; Foglia, L.; Giudici, M.; Mehl, S.; Margiotta, S.; Negri, S.L. Seawater intrusion in karstic, coastal aquifers: Current challenges and future scenarios in the Taranto area (southern Italy). Sci. Tot. Environ. 2016, 573, 1340–1351. [Google Scholar] [CrossRef]
- García-Mendez, O.; Morelle, I.; Ballesteros, B.J.; Renau-Pruñonosa, A.; Renau-Llorens, A.; Esteller, M.V. Spatial characterization of the seawater upconing process in a coastal Mediterranean aquifer (Plana de Castellón, Spain): Evolution and controls. Environ. Earth Sci. 2016, 75, 728. [Google Scholar] [CrossRef]
- Singh, A. Managing the environmental problem of seawater intrusion in coastal aquifers through simulation-optimization modeling. Ecol. Indic. 2015, 48, 498–504. [Google Scholar] [CrossRef]
- Ketabchi, H.; Ataie-Ashtiani, B. Evolutionary algorithms for the optimal management of coastal groundwater: A comparative study toward future challenges. J. Hydrol. 2015, 520, 193–213. [Google Scholar] [CrossRef]
- Song, J.; Yang, Y.; Wu, J.; Wu, J.; Sun, X.; Lin, J. Adaptive surrogate model based multiobjective optimization for coastal aquifer management. J. Hydrol. 2018, 561, 98–111. [Google Scholar] [CrossRef]
- Kløve, B.; Ala-aho, P.; Bertrand, G.; Boukalova, Z.; Ertürk, A.; Goldscheider, N.; Ilmonen, J.; Karakaya, N.; Kupfersberger, H.; Kvœrner, J.; et al. Groundwater dependent ecosystems. Part I: Hydroecological status and trends. Environ. Sci. Policy 2011, 14, 770–781. [Google Scholar] [CrossRef]
- Zheng, C.; Bennett, G.D. Applied Contaminant Transport Modeling, 2nd ed.; Wiley: New York, NY, USA, 2002; p. 621. [Google Scholar]
- Lee, S.Y.; Dunn, R.J.K.; Young, R.A.; Connolly, R.M.; Dale, P.E.R.; Dehayr, R.; Lemckert, C.J.; Mckinnon, S.; Powell, B.; Teasdale, P.R.; et al. Impact of urbanization on coastal wetland structure and function. Austral Ecol. 2016, 31, 149–163. [Google Scholar] [CrossRef]
- McGrane, S.J. Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: A review. Hydrol. Sci. J. 2016, 61, 2295–2311. [Google Scholar] [CrossRef]
- Webster, I.T. The hydrodynamics and salinity regime of a coastal lagoon–The Coorong, Australia–Seasonal to multi-decadal timescales. Estuar. Coast. Shelf Sci. 2010, 90, 264–274. [Google Scholar] [CrossRef]
- Golden, H.E.; Lane, C.R.; Amatya, D.M.; Bandilla, K.W.; Kiperwas, H.R.; Knightes, C.D.; Ssegane, H. Hydrologic connectivity between geographically isolated wetlands and surface water systems: A review of select modeling methods. Environ. Model. Soft. 2014, 53, 190–206. [Google Scholar] [CrossRef]
- Post, E.; Bhatt, U.S.; Bitz, C.M.; Brodie, J.F.; Fulton, T.L.; Hebblewithe, M.; Kerby, J.; Kutz, S.J.; Stirling, I.; Walker, D.A. Ecological consequences of sea-ice decline. Science 2013, 341, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Giambastiani, B.M.S.; Colombani, N.; Greggio, N.; Antonellini, M.; Mastrocicco, M. Coastal aquifer response to extreme storm events in Emilia-Romagna, Italy. Hydrol. Process. 2017, 31, 1613–1621. [Google Scholar] [CrossRef]
- Westbrook, S.J.; Rayner, J.L.; Davis, G.B.; Clement, T.P.; Bjerg, P.L.; Fisher, S.J. Interaction between shallow groundwater, saline surface water and contaminant discharge at a seasonally and tidally forced estuarine boundary. J. Hydrol. 2005, 302, 255–269. [Google Scholar] [CrossRef]
- Nielsen, D.L.; Brock, M.A. Modified water regime and salinity as a consequence of climate change: Prospects for wetlands of Southern Australia”. Clim. Chang. 2009, 95, 523–533. [Google Scholar] [CrossRef]
- Havens, K.E.; Steinman, A.D. Ecological responses of a large shallow lake (Okeechobee, Florida) to climate change and potential future hydrologic regimes. Environ. Manag. 2008, 55, 763–775. [Google Scholar] [CrossRef] [PubMed]
- Dunlop, G.; Palanichamy, J.; Kokkat, A.; EJ, J.; Palani, S. Simulation of saltwater intrusion into coastal aquifer of Nagapattinam in the lower Cauvery basin using SEAWAT. Ground. Sustain. Dev. 2019, 8, 294–301. [Google Scholar] [CrossRef]
- Amorosi, A.; Pacifico, A.; Rossi, V.; Ruberti, D. Late Quaternary incision and deposition in an active volcanic setting: The Volturno valley fill, southern Italy. Sediment. Geol. 2012, 282, 307–320. [Google Scholar] [CrossRef]
- Ruberti, D.; Vigliotti, M. Land use and landscape pattern changes driven by land reclamation in a coastal area: The case of Volturno delta plain, Campania Region, southern Italy. Environ. Earth Sci. 2017, 76, 694. [Google Scholar] [CrossRef]
- Ruberti, D.; Vigliotti, M.; Di Mauro, A.; Chieffi, R.; Di Natale, M. Human influence over 150 years of coastal evolution in the Volturno delta system (southern Italy). J. Coast. Conserv. 2018, 22, 897–917. [Google Scholar] [CrossRef]
- Ferranti, L.; Oldow, J.S.; Sacchi, M. Pre-Quaternary orogen-parallel extension in the Southern Apennine belt, Italy. Tectonophysics 1996, 260, 325–347. [Google Scholar] [CrossRef]
- Casciello, E.; Cesarano, M.; Pappone, G. Extensional detachment faulting on the Tyrrhenian margin of the southern Apennines contractional belt (Italy). J. Geol. Soc. 2006, 163, 617–629. [Google Scholar] [CrossRef]
- Matano, F.; Critelli, S.; Barone, M.; Muto, F.; Di Nocera, S. Stratigraphic and provenance evolution of the Southern Apennines foreland basin system during the Middle Miocene to Pliocene (Irpinia-Sannio successions, Italy). Mar. Pet. Geol. 2014, 57, 652–670. [Google Scholar] [CrossRef]
- Sacchi, M.; Molisso, F.; Pacifico, A.; Vigliotti, M.; Sabbarese, C.; Ruberti, D. Late-Holocene to recent evolution of Lake Patria, South Italy: An example of a coastal lagoon within a Mediterranean delta system. Glob. Planet. Chang. 2014, 117, 9–27. [Google Scholar] [CrossRef]
- Ruberti, D.; Sacchi, M.; Pepe, F.; Vigliotti, M. LGM incised valley in a volcanic setting. The Northern Campania Plain (Southern Italy). In Proceedings of the Quaternary: Past, Present, Future-AIQUA Conference, Florence, Italy, 13–14 June 2018; pp. 35–38. [Google Scholar]
- Mastrocicco, M.; Busico, G.; Colombani, N. Deciphering interannual temperature variations in springs of the Campania region (Italy). Water 2019, 11, 288. [Google Scholar] [CrossRef]
- Busico, G.; Cuoco, E.; Kazakis, N.; Colombani, N.; Mastrocicco, M.; Tedesco, D.; Voudouris, K. Multivariate statistical analysis to characterize/discriminate between anthropogenic and geogenic trace elements occurrence in the Campania Plain, Southern Italy. Environ. Pollut. 2018, 234, 260–269. [Google Scholar] [CrossRef]
- Mastrocicco, M.; Busico, G.; Colombani, N.; Usai, A.; Ruberti, D. Seasonal salinity variations in a coastal wetland induced by complex interactions between sea, river and evapoconcentration processes. In Proceedings of the Sixth International Conference on Estuaries and Coasts (ICEC-2018), Caen, France, 20–23 August 2018. [Google Scholar]
- MIPAAF. Agrometeorological Online Database. 2018. Available online: https://www.politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/7012 (accessed on 12 March 2019).
- EURO-CORDEX. 2019. Available online: https://www.euro-cordex.net/index.php.en (accessed on 15 March 2019).
- Allen, R.G.; Wright, J.L.; Pruitt, W.O.; Pereira, L.S.; Jensen, M.E. “Water Requirements”, In Design and Operation of Farm Irrigation Systems, 2nd ed.; American Society of Agricultural and Biological Engineers, Michigan (US): St. Joseph, MI, USA, 2007; pp. 208–288. [Google Scholar]
- Langevin, C.D.; Thorne, D.T.; Dausman, A.M.; Sukop, M.C.; Guo, W. SEAWAT Version 4: A Computer Program for Simulation of Multi-Species Solute and Heat Transport: U.S. Geological Survey Techniques and Methods Book 6; USGS: Reston, VA, USA, 2008; Chapter A22; p. 39.
- Hsieh, P.A.; Winston, R.B. User’s Guide To Model Viewer, A Program For Three-Dimensional Visualization of Ground-water Model Results: U.S. Geological Survey Open-File Report 02-106; USGS: Reston, VA, USA, 2002; p. 18. [CrossRef]
- Mastrocicco, M.; Colombani, N.; Sbarbati, C.; Petitta, M. Assessing the effect of saltwater intrusion on petroleum hydrocarbons plumes via numerical modelling. Water Air Soil Pollut. 2012, 223, 4417–4427. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models. Part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Sammari, C.; Koutitonsky, V.G.; Moussa, M. Sea level variability and tidal resonance in the Gulf of Gabes, Tunisia. Contin. Shelf Res. 2006, 26, 338–350. [Google Scholar] [CrossRef]
- ISPRA, 2019. Marine National Tide Gauge Network Online Database. Available online: https://mareografico.it/ (accessed on 14 March 2019).
- Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Chang. 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Bucchignani, E.; Montesarchio, M.; Zollo, A.L.; Mercogliano, P. High-resolution climate simulations with COSMO-CLM over Italy: Performance evaluation and climate projections for the 21st century. Int. J. Climatol. 2016, 36, 735–756. [Google Scholar] [CrossRef]
- Donadio, C.; Vigliotti, R.; Valente, R.; Stanislao, C.; Ivaldi, R.; Ruberti, D. Anthropic vs. natural shoreline changes along the northern Campania coast, Italy. J. Coast. Conserv. 2018, 22, 939–955. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, W. A review of regional groundwater flow modeling. Geosci. Front. 2011, 2, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Lambeck, K.; Antonioli, F.; Anzidei, M.; Ferranti, L.; Leoni, G.; Scicchitano, G.; Silenzi, S. Sea level change along the Italian coast during the Holocene and projections for the future. Quat. Int. 2011, 232, 250–257. [Google Scholar] [CrossRef]
- Thomson, A.M.; Calvin, K.V.; Smith, S.J.; Kyle, G.P.; Volke, A.; Patel, P.; Delgado-Arias, S.; Bond-Lamberty, B.; Wise, M.A.; Clarke, L.E.; et al. RCP4.5: A pathway for stabilization of radiative forcing by 2100. Clim. Chang. 2011, 109, 77. [Google Scholar] [CrossRef]
- Chun, J.A.; Lim, C.; Kim, D.; Kim, J.S. Assessing Impacts of Climate Change and Sea-Level Rise on Seawater Intrusion in a Coastal Aquifer. Water 2018, 10, 357. [Google Scholar] [CrossRef]
- Kalaoun, O.; Jazar, M.; Al Bitar, A. Assessing the Contribution of Demographic Growth, Climate Change, and the Refugee Crisis on Seawater Intrusion in the Tripoli Aquifer. Water 2018, 10, 973. [Google Scholar] [CrossRef]
Parameter | Values |
---|---|
Unconfined aquifer sand K (m/s) | From 5.0 × 10−4 to 5.0 × 10−5 |
Unconfined aquifer sand Ss (1/m) | 1.0 × 10−4 |
Unconfined aquifer sand Sy (-) | 0.3 |
Unconfined aquifer silty-clay K (m/s) | 1.0 × 10−6 |
Unconfined aquifer silty-clay Ss (1/m) | 1.0 ×10−4 |
Unconfined aquifer silty-clay Sy (-) | 0.1 |
River conductance C (m2/s) | 1.0 × 10−4 |
Longitudinal dispersivity | 2 |
Horizontal dispersivity | 0.2 |
Vertical dispersivity | 0.002 |
Diffusion coefficient | 1.0 × 10−9 |
Effective porosity | 0.25 |
Depositional System | Facies Association | Mean Thickness (m) | Lithology Sedimentary Structures | Accessories |
---|---|---|---|---|
Alluvial plain | Fluvial channel | 2–20 | Coarse-to medium/fine sands, erosional contacts | Mostly barren, locally Poorly-preserved fossils |
Crevasse/levee | 0.5–2 | Alternating silt and medium/fine-sands | ||
Floodplain | 1–10 | Clay and silty-clay | Bioturbation, root traces, paleosols | |
Distributary channels | 1–6 | Medium-to-fine sands | Commonly barren, locally freshwater-to-brackish ostracods | |
Delta plain | Estuary/Swamp | 1–3 | Soft dark clay | Wood fragments, plant remains, peat |
Lagoon/Bay | 1–4 | Clay locally alternating with fine sand | Bioturbation, mixed euryhaline and brackish-marine fossils | |
Beach Barrier Strandplain/Delta front | Transgressive barrier | 0.5–2 | Silty-fine sand | Increasing marine fossils |
Upper shoreface/Foreshore | 1–5 | Medium-to-coarse sands | Marine fossils | |
Prodelta | Delta front transition | 4–12 | Medium-to-fine sands | Open marine fossils |
Prodelta | 3–15 | Clay | Organic content, wood fragments, open marine fossils |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mastrocicco, M.; Busico, G.; Colombani, N.; Vigliotti, M.; Ruberti, D. Modelling Actual and Future Seawater Intrusion in the Variconi Coastal Wetland (Italy) Due to Climate and Landscape Changes. Water 2019, 11, 1502. https://doi.org/10.3390/w11071502
Mastrocicco M, Busico G, Colombani N, Vigliotti M, Ruberti D. Modelling Actual and Future Seawater Intrusion in the Variconi Coastal Wetland (Italy) Due to Climate and Landscape Changes. Water. 2019; 11(7):1502. https://doi.org/10.3390/w11071502
Chicago/Turabian StyleMastrocicco, Micòl, Gianluigi Busico, Nicolò Colombani, Marco Vigliotti, and Daniela Ruberti. 2019. "Modelling Actual and Future Seawater Intrusion in the Variconi Coastal Wetland (Italy) Due to Climate and Landscape Changes" Water 11, no. 7: 1502. https://doi.org/10.3390/w11071502