Next Article in Journal
Seepage Comprehensive Evaluation of Concrete Dam Based on Grey Cluster Analysis
Previous Article in Journal
Sources and Mechanisms of Low-Flow River Phosphorus Elevations: A Repeated Synoptic Survey Approach
Open AccessArticle

Analysis of Long-Term Trends of Annual and Seasonal Rainfall in the Awash River Basin, Ethiopia

1
Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Jimma, Ethiopia
2
Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX 79409-1023, USA
3
Department of Water Resources Engineering, Adama Science and Technology University, Adama, Ethiopia
*
Authors to whom correspondence should be addressed.
Water 2019, 11(7), 1498; https://doi.org/10.3390/w11071498
Received: 23 May 2019 / Revised: 9 July 2019 / Accepted: 11 July 2019 / Published: 19 July 2019
(This article belongs to the Section Hydrology)
With climate change prevailing around the world, understanding the changes in long-term annual and seasonal rainfall at local scales is very important in planning for required adaptation measures. This is especially true for areas such as the Awash River basin where there is very high dependence on rain- fed agriculture characterized by frequent droughts and subsequent famines. The aim of the study is to analyze long-term trends of annual and seasonal rainfall in the Awash River Basin, Ethiopia. Monthly rainfall data extracted from Climatic Research Unit (CRU 4.01) dataset for 54 grid points representing the entire basin were aggregated to find the respective areal annual and seasonal rainfall time series for the entire basin and its seven sub-basins. The Mann-Kendall (MK) test and Sen Slope estimator were applied to the time series for detecting the trends and for estimating the rate of change, respectively. The Statistical software package R version 3.5.2 was used for data extraction, data analyses, and plotting. Geographic information system (GIS) package was also used for grid making, site selection, and mapping. The results showed that no significant trend (at α = 0.05) was identified in annual rainfall in all sub-basins and over the entire basin in the period (1902 to 2016). However, the results for seasonal rainfall are mixed across the study areas. The summer rainfall (June through September) showed significant decreasing trend (at α ≤ 0.1) over five of the seven sub-basins at a rate varying from 4 to 7.4 mm per decade but it showed no trend over the two sub-basins. The autumn rainfall (October through January) showed no significant trends over four of the seven sub-basins but showed increasing trends over three sub-basins at a rate varying from 2 to 5 mm per decade. The winter rainfall (February through May) showed no significant trends over four sub-basins but showed significant increasing trends (at α ≤ 0.1) over three sub-basins at a rate varying from 0.6 to 2.7 mm per decade. At the basin level, the summer rainfall showed a significant decreasing trend (at α = 0.05) while the autumn and winter rainfall showed no significant trends. In addition, shift in some amount of summer rainfall to winter and autumn season was noticed. It is evident that climate change has shown pronounced effects on the trends and patterns of seasonal rainfall. Thus, the study contribute to better understanding of climate change in the basin and the information from the study can be used in planning for adaptation measures against a changing climate. View Full-Text
Keywords: climate change; Mann–Kendall; Sens’s Slope estimator; sub-basins; Awash River Basin; Ethiopia climate change; Mann–Kendall; Sens’s Slope estimator; sub-basins; Awash River Basin; Ethiopia
Show Figures

Figure 1

MDPI and ACS Style

Mulugeta, S.; Fedler, C.; Ayana, M. Analysis of Long-Term Trends of Annual and Seasonal Rainfall in the Awash River Basin, Ethiopia. Water 2019, 11, 1498.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop