Hydrogeological Bayesian Hypothesis Testing through Trans-Dimensional Sampling of a Stochastic Water Balance Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Development Method
- H0: The process/geometry does not matter for the prediction of interest.
- HA: The process/geometry matters for the prediction of interest.
2.2. Bayesian Inference Framework
2.3. Interpretation
2.4. Water Balance Model
- H0: Water balance component does not matter for the prediction of interest.
- HA: Water balance component matters for the prediction of interest.
3. Case Study
3.1. Water Balance Components
3.2. Water Balance Parameters
3.3. Alternative Conceptual Models
- H0: A northern palaeovalley does not exist and the groundwater flows along (i.e., parallel to) the northern boundary of the system and therefore no lateral discharge into or out of this area occurs.
- HA: A northern palaeovalley exists and the groundwater flows across the northern boundary and therefore contributes to the total lateral discharge out of the model domain.
- H0: The Koolpinyah Dolostone is a compartmentalized aquifer and therefore its contribution to lateral discharge is unimportant.
- HA: The Koolpinyah Dolostone is a continuous aquifer and contributes significantly to lateral discharge.
- H0: Ben Bunga and Cattle Creek are a rainfall-runoff feature, disconnected from the groundwater system.
- HA: The streamflow in Ben Bunga and Cattle Creek originates from both groundwater discharge and rainfall-runoff.
- H0: Swim Creek is a rainfall-runoff feature, disconnected from the groundwater system.
- HA: Streamflow in Swim Creek originated from groundwater as well as rainfall-runoff.
- H0: The permanent lagoons are rainfall-runoff features, disconnected from the groundwater system.
- HA: The permanent lagoons are, at least in part, groundwater discharge features.
4. Results
4.1. Posterior Probabilities of Hypotheses based on Assumed Error
4.2. Model Predictions
5. Discussion
6. Conclusions
- More confidence was gained in the water balance compared to the deterministic solution. Probabilistic distribution of predictions take account of all the conceptual models that seem plausible under the current state of knowledge as well as the parameter uncertainty.
- The understanding of the system functioning has increased. None of the conceptual models can be ruled out, but we have a better idea of how important they are to the water balance predictions and how they impact parameter ranges.
- The fieldwork going forward can now be prioritized in terms of the impact the different components have shown on the water balance predictions.
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A. On Defining the Prior Range for Parameters in the Wildman River Area Groundwater Balance
Appendix A.1. Recharge
Appendix A.2. Lateral Outflow
Appendix A.2.1. Transmissivity
Appendix A.2.2. Width
Appendix A.2.3. Hydraulic Gradient
Appendix A.3. Baseflow
Appendix A.3.1. Streams
Appendix A.3.2. Lagoons
Appendix A.4. Storage
References
- Gupta, H.V.; Clark, M.P.; Vrugt, J.A.; Abramowitz, G.; Ye, M. Towards a comprehensive assessment of model structural adequacy. Water Resour. Res. 2012, 48, 1–16. [Google Scholar] [CrossRef]
- Enemark, T.; Peeters, L.J.M.; Mallants, D.; Batelaan, O. Hydrogeological conceptual model building and testing: A review. J. Hydrol. 2019, 569, 310–329. [Google Scholar] [CrossRef]
- Bredehoeft, J.D. The conceptualization model problem-surprise. Hydrogeol. J. 2005, 13, 37–46. [Google Scholar] [CrossRef]
- Beven, K.J. On hypothesis testing in hydrology: Why falsification of models is still a really good idea. WIREs Water 2018, 3, e1278. [Google Scholar] [CrossRef]
- Nearing, G.S.; Gupta, H.V. Ensembles vs. information theory: Supporting science under uncertainty. Front. Earth Sci. 2018, 12, 653–660. [Google Scholar] [CrossRef]
- Oreskes, N.; Shrader-frechette, K.; Belitz, K. Verification. Validation and Confirmation of Numerical Models in the Earth Sciences. Science 1994, 263, 641–646. [Google Scholar] [CrossRef] [PubMed]
- Caers, J. Bayesianism in Geoscience. In Handbook of Mathematical Geosciences; Sagar, B.S.D., Cheng, Q., Agterberg, F., Eds.; Springer: Stanford, CA, USA, 2018; pp. 527–566. [Google Scholar]
- Guillaume, J.H.A.; Hunt, R.J.; Comunian, A.; Blakers, R.S.; Fu, B. Methods for Exploring Uncertainty in Groundwater Management Predictions. In Integrated Groundwater Management; Jakeman, A.J., Barreteau, O., Hunt, R.J., Rinaudo, J., Ross, A., Eds.; Springer: Berlin, Germany, 2016; pp. 602–614. [Google Scholar]
- Kass, R.E.; Raftery, A.E. Bayes Factors. J. Am. Stat. Assoc. 1995, 90, 773–795. [Google Scholar] [CrossRef]
- Jeffreys, H. Theory of Probability, 3rd ed.; Oxford University Press: Oxford, UK, 1939. [Google Scholar]
- Rojas, R.M.; Kahunde, S.; Peeters, L.; Batelaan, O.; Feyen, L.; Dassargues, A. Application of a multimodel approach to account for conceptual model and scenario uncertainties in groundwater modelling. J. Hydrol. 2010, 394, 416–435. [Google Scholar] [CrossRef] [Green Version]
- Rojas, R.M.; Batelaan, O.; Feyen, L.; Dassargues, A. Assessment of conceptual model uncertainty for the regional aquifer Pampa del Tamarugal–North Chile. Hydrol. Earth Syst. Sci. Discuss. 2010, 6, 5881–5935. [Google Scholar] [CrossRef]
- Hermans, T.; Nguyen, F.; Caers, J. Uncertainty in training image-based inversion of hydraulic head data constrained to ERT data: Workflow and case study. Water Resour. Res. 2015, 51, 5332–5352. [Google Scholar] [CrossRef]
- Brunetti, C.; Linde, N.; Vrugt, J.A. Bayesian model selection in hydrogeophysics: Application to conceptual subsurface models of the South Oyster Bacterial Transport. Adv. Water Resour. 2017, 102, 127–141. [Google Scholar] [CrossRef]
- Troldborg, M.; Nowak, W.; Tuxen, N.; Bjerg, P.L.; Helmig, R.; Binning, P.J. Uncertainty evaluation of mass discharge estimates from a contaminated site using a fully Bayesian framework. Water Resour. Res. 2010, 46, 1–19. [Google Scholar] [CrossRef]
- Thomsen, N.I.; Binning, P.J.; Mcknight, U.S.; Tuxen, N.; Bjerg, P.L.; Troldborg, M. A Bayesian belief network approach for assessing uncertainty in conceptual site models at contaminated sites. J. Contam. Hydrol. 2016, 188, 12–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Höge, M.; Guthke, A.; Nowak, W. The hydrologist’s guide to Bayesian model selection, averaging and combination. J. Hydrol. 2019, 572, 96–107. [Google Scholar] [CrossRef]
- Remson, I.; Gorelick, S.M.; Fliegner, J.F. Computer Models in Ground-Water Exploration. Ground Water 1980, 18, 447–451. [Google Scholar] [CrossRef]
- Dausman, A.M.; Doherty, J.; Langevin, C.D.; Dixon, J. Hypothesis testing of buoyant plume migration using a highly parameterized variable-density groundwater model at a site in Florida, USA. Hydrogeol. J. 2010, 18, 147–160. [Google Scholar] [CrossRef]
- Haitjema, H.M. Introduction. In Analytic Element Modeling of Groundwater Flow; Haitjema, H.M., Ed.; Academic Press: Cambridge, MA, USA, 1995; pp. 1–4. [Google Scholar]
- Neuman, S.P.; Wierenga, P.J. A Comprehensive Strategy of Hydrogeologic Modeling and Uncertainty Analysis for Nuclear Facilities and Sites (NUREG/CR-6805); U.S. Nuclear Regulatory Commission: Washington, DC, USA, 2003; p. 311.
- Haitjema, H.M. The Role of Hand Calculations in Ground Water Flow Modeling. Groundwater 2006, 44, 786–791. [Google Scholar] [CrossRef]
- Hunt, R.J.; Zheng, C. The Current State of Modeling. Ground Water 2012, 50, 330–333. [Google Scholar] [CrossRef]
- Turnadge, C.; Mallants, D.; Peeters, L. Sensitivity and uncertainty analysis of a regional-scale groundwater flow model featuring coal seam gas extraction. CSIRO, Australia. ResearchGate 2018. [Google Scholar] [CrossRef]
- Refsgaard, J.C.; Christensen, S.; Sonnenborg, T.O.; Seifert, D.; Højberg, A.L.; Troldborg, L. Review of strategies for handling geological uncertainty in groundwater flow and transport modeling. Adv. Water Resour. 2012, 36, 36–50. [Google Scholar] [CrossRef]
- Dassargues, A. Chapter 2: Hydrologic balance and groundwater. In Hydrogeology: Groundwater Science and Engineering; Dassargues, A., Ed.; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Barnett, B.; Townley, L.R.; Post, V.; Evans, R.E.; Hunt, R.J.; Peeters, L.; Richardson, S.; Werner, A.D.; Knapton, A.; Boronkay, A. Australian Groundwater Modelling Guidelines; National Water Commision: Canberra, Australia, 2012; ISBN 9781921853913. [Google Scholar]
- Baalousha, H. Stochastic water balance model for rainfall recharge quantification in Ruataniwha Basin, New Zealand. Environ. Geol. 2009, 58, 85–93. [Google Scholar] [CrossRef]
- Sebok, E.; Refsgaard, J.C.; Warmink, J.J.; Stisen, S.; Jensen, K.H. Using expert elicitation to quantify catchment water balances and their uncertainties. Water Resour. Res. 2016, 52, 5111–5131. [Google Scholar] [CrossRef] [Green Version]
- Thompson, S.; MacVean, L.; Sivapalan, M. A stochastic water balance framework for lowland watersheds. Water Resour. Res. 2017, 53, 9564–9579. [Google Scholar] [CrossRef]
- Green, P.J. Trans-dimensional Markov chain Monte Carlo. In Highly Structured Stochastic Systems; Green, P.J., Hjort, N.L., Richardson, S., Eds.; Oxford Statistical Science Series: Oxford, UK, 2003; pp. 179–198. [Google Scholar]
- Malinverno, A.; Leaney, W. A Monte Carlo method to quantify uncertainty in the inversion of zero-offset vsp data. In Proceedings of the 70th SEG Annual Meeting Expanded Abstracts, Tulsa, Oklahoma, 6–11 August 2000; pp. 2392–2396. [Google Scholar]
- Jiménez, S.; Mariethoz, G.; Brauchler, R.; Bayer, P. Smart pilot points using reversible-jump Markov-chain Monte Carlo. Water Resour. Res. 2016, 52, 3966–3983. [Google Scholar] [CrossRef] [Green Version]
- Mondal, A.; Efendiev, Y.; Mallick, B.; Datta-Gupta, A. Bayesian uncertainty quantification for flows in heterogeneous porous media using reversible jump Markov chain Monte Carlo methods. Adv. Water Resour. 2010, 33, 241–256. [Google Scholar] [CrossRef]
- Somogyvari, M.; Jalali, M.; Parras, S.J.; Bayer, P. Synthetic fracture network characterization with transdimensional inversion. Water Resour. Res. 2017, 53, 5104–5123. [Google Scholar] [CrossRef]
- Metropolis, N.; Ulam, S. The Monet Carlo Method. J. Am. Stat. Assoc. 1949, 44, 335–341. [Google Scholar] [CrossRef]
- Hastings, W.K. Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Biometrika 1970, 57, 97–109. [Google Scholar] [CrossRef]
- Lee, J.; Sung, W.; Choi, J.H. Metamodel for efficient estimation of capacity-fade uncertainty in Li-Ion batteries for electric vehicles. Energies 2015, 8, 5538–5554. [Google Scholar] [CrossRef]
- Fisher, R.A. The factorial design of experimentation. In The Design of Experiments; Fisher, R.A., Ed.; Oliver and Boyd: London, UK, 1935; pp. 96–113. [Google Scholar]
- Pham, H.V.; Tsai, F.T.C. Optimal observation network design for conceptual model discrimination and uncertainty reduction. Water Resour. Res. 2016, 52, 1245–1264. [Google Scholar] [CrossRef] [Green Version]
- Aphale, O.; Tonjes, D.J. Multimodel Validity Assessment of Groundwater Flow Simulation Models Using Area Metric Approach. Groundwater 2017, 55, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Højberg, A.L.; Refsgaard, J.C. Model uncertainty-parameter uncertainty versus conceptual models. Water Sci. Technol. 2005, 52, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Seifert, D.; Sonnenborg, T.O.; Refsgaard, J.C.; Højberg, A.L.; Troldborg, L. Assessment of hydrological model predictive ability given multiple conceptual geological models. Water Resour. Res. 2012, 48, 1–16. [Google Scholar] [CrossRef]
- Ye, M.; Meyer, P.D.; Neuman, S.P. On model selection criteria in multimodel analysis. Water Resour. Res. 2008, 44, 1–12. [Google Scholar] [CrossRef]
- Tsai, F.T.C.; Elshall, A.S. Hierarchical Bayesian model averaging for hydrostratigraphic modeling: Uncertainty segregation and comparative evaluation. Water Resour. Res. 2013, 49, 5520–5536. [Google Scholar] [CrossRef]
- Chitsazan, N.; Nadiri, A.A.; Tsai, F.T.C. Prediction and structural uncertainty analyses of artificial neural networks using hierarchical Bayesian model averaging. J. Hydrol. 2015, 528, 52–62. [Google Scholar] [CrossRef] [Green Version]
- Sambridge, M.; Gallagher, K.; Jackson, A.; Rickwood, P. Trans-dimensional inverse problems, model comparison and the evidence. Geophys. J. Int. 2006, 167, 528–542. [Google Scholar] [CrossRef] [Green Version]
- Schöniger, A.; Wöhling, T.; Nowak, W. A statistical concept to assess the uncertainty in Bayesian model weights and its impact on model ranking. Water Resour. Res. 2015, 51, 7524–7546. [Google Scholar] [CrossRef] [Green Version]
- Turnadge, C.; Crosbie, R.S.; Tickell, S.J.; Zaar, U.; Smith, S.D.; Dawes, W.R.; Davies, P.; Harrington, G.A.; Taylor, A.R. Hydrogeological characterisation of the Mary–Wildman rivers area, Northern Territory. In A Technical Report to the Australian Government from the CSIRO Northern Australia Water Resource Assessment, Part of the National Water Infrastructure Development Fund: Water Resource Assessments; CSIRO: Canberra, Australia, 2018; Available online: https://publications.csiro.au/rpr/download?pid=csiro:EP185984&dsid=DS3 (accessed on 16 January 2019).
- Tickell, S.J.; Zaar, U. Water Resources of the Wildman River Area, Technical Report 8/2017D; Northern Territory Department of Environment and Natural Resources: Palmerston City, Australia, 2017.
- Turnadge, C.; Taylor, A.R.; Harrington, G.A. Groundwater flow modelling of the Mary–Wildman rivers area, Northern Territory. In A Technical Report to the Australian Government from the CSIRO Northern Australia Water Resource Assessment, Part of the National Water Infrastructure Development Fund: Water Resources Assessments; CSIRO: Canberra, Australia, 2018. [Google Scholar] [CrossRef]
- Doble, R.C.; Crosbie, R.S. Review: Current and emerging methods for catchment-scale modelling of recharge and evapotranspiration from shallow groundwater. Hydrogeol. J. 2017, 25, 3–23. [Google Scholar] [CrossRef]
- Eckhardt, K. A comparison of baseflow indices, which were calculated with seven different baseflow separation methods. J. Hydrol. 2008, 352, 168–173. [Google Scholar] [CrossRef]
- Graham, B. Surface Water Resources in the Northeastern Corner of Wildman River Station (Final Report for Water Resources Division Project Number 2026); Department of Mines and Energy: Darwin, Australia, 1985.
- Meyer, P.D.; Ye, M.; Rockhold, M.L.; Neuman, S.P.; Cantrell, K.J. Combined Estimation of Hydrogeologic Conceptual Model, Parameter, and Scenario Uncertainty with Application to Uranium Transport at the Hanford Site 300 Area; Pacific Northwest National Lab.: Richland, WA, USA, 2007. [Google Scholar]
- Ye, M.; Pohlmann, K.F.; Chapman, J.B. Expert elicitation of recharge model probabilities for the Death Valley regional flow system. J. Hydrol. 2008, 354, 102–115. [Google Scholar] [CrossRef]
- Oliphant, T.E. A Guide to NumPy; CreateSpace Independent Publishing Platform: Scotts Valley, CA, USA, 2006. [Google Scholar]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Rojas, R.M.; Feyen, L.; Dassargues, A. Conceptual model uncertainty in groundwater modeling: Combining generalized likelihood uncertainty estimation and Bayesian model averaging. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef] [Green Version]
- Schöniger, A.; Illman, W.A.; Wöhling, T.; Nowak, W. Finding the right balance between groundwater model complexity and experimental effort via Bayesian model selection. J. Hydrol. 2015, 531, 96–110. [Google Scholar] [CrossRef]
- Zeng, X.; Wang, D.; Wu, J.; Zhu, X.; Wang, L.; Zou, X. Evaluation of a Groundwater Conceptual Model by Using a Multimodel Averaging Method. Hum. Ecol. Risk Assess. Int. J. 2015, 21, 1246–1258. [Google Scholar] [CrossRef]
- Betini, G.S.; Avgar, T.; Fryxell, J.M. Why are we not evaluating multiple competing hypotheses in ecology and evolution? R. Soc. Open Sci. 2017, 4, 160756. [Google Scholar] [CrossRef] [Green Version]
- Cook, P.G.; Bohlke, J.-K. Determining Timescales for Groundwater Flow and Solute Transport. In Environmental Tracers in Subsurface Hydrology; Cook, P.G., Herczeg, A.L., Eds.; Springer: Berlin, Germany, 2000; pp. 1–30. ISBN 9781461370574. [Google Scholar]
- Lyne, V.; Hollick, M. Stochastic Time-Variable Rainfall-Runoff Modeling. In Proceedings of the Institute of Engineers Australia National Conference, Perth, Australia, September 1979; Available online: https://www.researchgate.net/publication/272491803_Stochastic_Time-Variable_Rainfall-Runoff_Modeling (accessed on 23 January 2019).
- Eckhardt, K. How to construct recursive digital filters for baseflow separation. Hydrol. Process. 2005, 19, 507–515. [Google Scholar] [CrossRef]
Bayes Factor | Probabilities | Description |
---|---|---|
<0.005 | <0.075 | Decisive support for k2 |
0.005–0.05 | 0.075–0.182 | Strong support for k2 |
0.05–0.3 | 0.182–0.366 | Substantial support for k2 |
0.3–3 | 0.366–0.634 | Inconclusive, no support for either k1 or k2 |
3–20 | 0.634–0.818 | Substantial support for k1 |
20–150 | 0.818–0.925 | Strong support for k1 |
>150 | >0.925 | Decisive support for k1 |
Component | Parameter | Dry Min | Dry Max | Wet Min | Wet Max | Unit |
---|---|---|---|---|---|---|
Net Recharge | Rate | 0 | 0 | 32 | 178 | mm/year |
Area | 350 | 400 | 350 | 400 | km2 | |
Lateral discharge | Transmissivity Dolostone | 109 | 2630 | 109 | 2630 | m2/day |
Transmissivity Sand | 163 | 1920 | 163 | 1920 | m2/day | |
Gradient North | 0.0003 | 0.0009 | 0.0004 | 0.0012 | - | |
Gradient Northeast | 0.0002 | 0.002 | 0.0004 | 0.004 | - | |
Width Dolostone North | 3000 | 10,000 | 3000 | 10,000 | m | |
Width Dolostone Northeast | 1000 | 7000 | 1000 | 7000 | m | |
Width Sand North | 1000 | 13,000 | 1000 | 13,000 | m | |
Width Sand Northeast | 1000 | 7000 | 1000 | 7000 | m | |
Lagoons | Area | 2.9 | 3.2 | 2.9 | 3.2 | km2 |
Rate | 0.5 | 2 | 0.5 | 2 | mm/day | |
Streams/springs | Baseflow Jimmy’s Creek | 0.06 | 0.09 | 0.2 | 0.3 | m3/day |
Baseflow Opium Creek | 0.05 | 0.07 | 0.2 | 0.3 | m3/day | |
Baseflow Swim Creek | 0.03 | 0.1 | 0.7 | 2.1 | m3/day | |
Discharge Cattle Creek | 0.001 | 0.005 | 0.005 | 0.03 | m3/day | |
Discharge Ben Bunga Creek | 0.001 | 0.005 | 0.005 | 0.03 | m3/day | |
Base Flow Index | 0.22 | 0.81 | 0.22 | 0.82 | - | |
Annual storage | 0 | 0 | 0 | 0 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enemark, T.; Peeters, L.J.; Mallants, D.; Batelaan, O.; Valentine, A.P.; Sambridge, M. Hydrogeological Bayesian Hypothesis Testing through Trans-Dimensional Sampling of a Stochastic Water Balance Model. Water 2019, 11, 1463. https://doi.org/10.3390/w11071463
Enemark T, Peeters LJ, Mallants D, Batelaan O, Valentine AP, Sambridge M. Hydrogeological Bayesian Hypothesis Testing through Trans-Dimensional Sampling of a Stochastic Water Balance Model. Water. 2019; 11(7):1463. https://doi.org/10.3390/w11071463
Chicago/Turabian StyleEnemark, Trine, Luk JM Peeters, Dirk Mallants, Okke Batelaan, Andrew P. Valentine, and Malcolm Sambridge. 2019. "Hydrogeological Bayesian Hypothesis Testing through Trans-Dimensional Sampling of a Stochastic Water Balance Model" Water 11, no. 7: 1463. https://doi.org/10.3390/w11071463
APA StyleEnemark, T., Peeters, L. J., Mallants, D., Batelaan, O., Valentine, A. P., & Sambridge, M. (2019). Hydrogeological Bayesian Hypothesis Testing through Trans-Dimensional Sampling of a Stochastic Water Balance Model. Water, 11(7), 1463. https://doi.org/10.3390/w11071463