The Influence of Sinusoidal Oscillating Water Flow on Sprinkler and Impact Kinetic Energy Intensities of Laterally-Moving Sprinkler Irrigation Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Testing Apparatus
2.2. Experimental Design and Methods
2.2.1. Radial Distribution of Sprinkler Intensity and Impact Kinetic Energy Intensity under Constant and Dynamic Water Pressure
2.2.2. The Distribution of Sprinkler Intensity and Impact Kinetic Energy Intensity of a Single Moving Sprinkler
2.2.3. Combined Sprinkler Intensity and Impact Kinetic Energy Intensity Distribution under Different Nozzle Spacings
3. Results
3.1. Radial Distribution of Sprinkler Intensity and Impact Kinetic Energy Intensity under Constant and Dynamic Water Pressure
3.2. The Distribution of Sprinkler Intensity and Impact Kinetic Energy of a Single Moving Sprinkler
3.3. The Peak Value of Combined Sprinkler Intensity and Impact Kinetic Energy Intensity
3.4. The Uniformity of Combined Sprinkler Intensity and Impact Kinetic Energy Intensity
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gan, L.; Rad, S.; Chen, X.B.; Fang, R.J.; Yan, L.; Su, S.H. Clock hand lateral, a new layout for semi-permanent sprinkler irrigation system. Water 2018, 10, 767. [Google Scholar] [CrossRef]
- Kincaid, D.C. Application rates from center pivot irrigation with current sprinkler types. Appl. Eng. Agric. 2005, 21, 605–610. [Google Scholar] [CrossRef]
- Evans, R.G.; King, B.A. Site-specific sprinkler irrigation in a water-limited future. Trans. ASABE 2012, 55, 493–504. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Sun, B.; Fang, H.Y.; Zhu, D.L.; Yang, L.X.; Li, Z.S. Experimental and simulation investigation on the kinetic energy dissipation rate of a fixed spray-plate sprinkler. Water 2018, 10, 1365. [Google Scholar] [CrossRef]
- Kranz, W.L.; Eisenhauer, D.E.; Retka, M.T. Water and energy-conservation using irrigation scheduling with center-pivot irrigation systems. Agric. Water Manag. 1992, 22, 325–334. [Google Scholar] [CrossRef]
- O’Shaughnessy, S.A.; Evett, S.R.; Andrade, M.A.; Workneh, F.; Price, J.A.; Rush, C.M. Site-specific variable-rate irrigation as a means to enhance water use efficiency. Trans. ASABE 2016, 59, 239–249. [Google Scholar]
- Singh, A.K.; Sharma, S.P.; Upadhyaya, A.; Rahman, A.; Sikka, A.K. Performance of low energy water application device. Water Resour. Manag. 2010, 24, 1353–1362. [Google Scholar] [CrossRef]
- Dukes, M.D.; Perry, C. Uniformity testing of variable-rate center pivot irrigation control systems. Precis. Agric. 2006, 7, 205–218. [Google Scholar] [CrossRef]
- Sayyadi, H.; Nazemi, A.H.; Sadraddini, A.A.; Delirhasannia, R. Characterising droplets and precipitation profiles of a fixed spray-plate sprinkler. Biosyst. Eng. 2014, 119, 13–24. [Google Scholar] [CrossRef]
- Seginer, I.; Kantz, D.; Nir, D. The distortion by wind of the distribution patterns of single sprinklers. Agric. Water Manag. 1991, 19, 341–359. [Google Scholar] [CrossRef]
- Hanson, B.R.; Orloff, S.B. Rotator nozzles more uniform than spray nozzles on center-pivot sprinklers. Calif. Agric. 1996, 50, 32–35. [Google Scholar] [CrossRef]
- Ribeiro, M.S.; Lima, L.A.; Colombo, A.; Caldeira, A.C.D.M.; Faria, F.H.D.S. Water distribuition characteristics and soil loss of LEPA Quad-Spray emitter nozzles. Eng. Agric. 2013, 33, 223–236. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Yuan, S.; Li, H.; Zhu, X. Combination uniformity improvement of impact sprinkler. Trans. Chin. Soc. Agric. Eng. 2011, 27, 107–111. [Google Scholar]
- Li, H.; Jiang, Y.; Xu, M.; Li, Y.; Chen, C. Effect on hydraulic performance of low-pressure sprinkler by an intermittent water dispersion device. Trans. ASABE 2016, 59, 521–532. [Google Scholar]
- Yuan, S.; Wei, Y.; Li, H.; Xiang, Q. Structure design and experiments on the water distribution of the variable-rate sprinkler with non-circle nozzle. Trans. Chin. Soc. Agric. Eng. 2010, 26, 149–153. [Google Scholar]
- Zhang, L.; Wu, P.; Zhu, D.; Zheng, C. Effect of pulsating pressure on labyrinth emitter clogging. Irrig. Sci. 2017, 35, 267–274. [Google Scholar] [CrossRef]
- Hills, D.J.; Silveira, R.C.M.; Wallender, W.W. Oscillating pressure for improving application uniformity of spray emitters. Trans. ASABE 1986, 29, 1080–1085. [Google Scholar] [CrossRef]
- Hills, D.J.; Gu, Y.P.; Wallender, W.W. Sprinkler uniformity for oscillating low water-pressure. Trans. ASABE 1987, 30, 729–734. [Google Scholar] [CrossRef]
- Buchin, A.F.; Pons, S.J.; Hills, D.J.; Abudu, S. Improving Water Application Efficiency in the Landscape through Pressure Oscillation. April 2004. Available online: https://www.researchgate.net/publication/237342500 (accessed on 1 April 2019).
- Ge, M.; Wu, P.; Zhu, D.; Ames, D.P. Comparison between sprinkler irrigation and natural rainfall based on droplet diameter. Span. J. Agric. Res. 2016, 14, 1201. [Google Scholar] [CrossRef]
- Ge, M.S.; Wu, P.; Zhu, D.L.; Zhang, L. Analysis of kinetic energy distribution of big gun sprinkler applied to continuous moving hose-drawn traveler. Agric. Water Manag. 2018, 201, 118–132. [Google Scholar] [CrossRef]
- Shin, S.S.; Park, S.D.; Choi, B.K. Universal power law for relationship between rainfall kinetic energy and rainfall intensity. Adv. Meteorol. 2016, 2016, 11. [Google Scholar] [CrossRef]
- Deboer, D.W.; Beck, D.L.; Bender, A.R. A field-evaluation of low, medium, and high-pressure sprinklers. Trans. ASABE 1992, 35, 1185–1189. [Google Scholar] [CrossRef]
- Undersander, D.J.; Marek, T.H.; Clark, R.N. Effect of nozzle type on runoff and yield of corn and sorghum under center pivot sprinkler systems. Irrig. Sci. 1985, 6, 107–116. [Google Scholar] [CrossRef]
- DeBoer, D.; Beck, D. Field evaluation of reduced pressure sprinklers. In ASAE Paper No. 83-2024; ASAE: St. Joseph, MI, USA, 1983; p. 24. [Google Scholar]
- Clark, G.A.; Srinivas, K.; Rogers, D.H.; Stratton, R.; Martin, V.L. Measured and simulated uniformity of low drift nozzle sprinklers. Trans. ASABE 2003, 46, 321–330. [Google Scholar] [CrossRef]
- DeBoer, D.W.; Monnens, M.J.; Kincaid, D.C. Measurement of sprinkler droplet size. Appl. Eng. Agric. 2001, 17, 11–15. [Google Scholar] [CrossRef]
- Yan, H.J.; Jin, H.Z.; Qian, Y.C. Characterizing center pivot irrigation with fixed spray plate sprinklers. Sci. China-Technol. Sci. 2010, 53, 1398–1405. [Google Scholar] [CrossRef]
- Yan, H.J.; Bai, G.; He, J.Q.; Lin, G. Influence of droplet kinetic energy flux density from fixed spray-plate sprinklers on soil infiltration, runoff and sediment yield. Biosyst. Eng. 2011, 110, 213–221. [Google Scholar] [CrossRef]
- Faci, J.M.; Salvador, R.; Playan, E.; Sourell, H. Comparison of fixed and rotating spray plate sprinklers. J. Irrig. Drain. Eng.-ASCE 2001, 127, 224–233. [Google Scholar] [CrossRef]
- Zhang, L.; Hui, X.; Chen, J.Y. Effect of terrain slope on water distribution and application uniformity for sprinkler irrigation. Int. J. Agric. Biol. Eng. 2018, 11, 120–125. [Google Scholar] [CrossRef] [Green Version]
- Thompson, A.L.; Regmi, T.P.; Ghidey, F.; Gantzer, C.; Hjelmfelt, A. Influence of kinetic energy on infiltration and erosionfluence of kinetic energy on infiltration and erosion. In Soil Erosion; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2001; p. 151. [Google Scholar]
- Ben-Hur, M.; Lado, M. Effect of soil wetting conditions on seal formation, runoff, and soil loss in arid and semiarid soils—A review. Aust. J. Soil Res. 2008, 46, 191–202. [Google Scholar] [CrossRef]
- Gilley, J.E.; Finkner, S.C. Estimating soil detachment caused by raindrop impact. Trans. ASABE 1985, 28, 140–146. [Google Scholar] [CrossRef]
- Solomon, K.H. Yield related interpretations of irrigation uniformity and efficiency measures. Irrig. Sci. 1984, 5, 161–172. [Google Scholar] [CrossRef]
- Letey, J.; Vaux, H.J.; Feinerman, E. Optimum crop water application as affected by uniformity of water infiltration. Agron. J. 1984, 76, 435–441. [Google Scholar] [CrossRef]
- Letey, J. Irrigation uniformity as related to optimum crop production - additional research is needed. Irrig. Sci. 1985, 6, 253–263. [Google Scholar] [CrossRef]
- Lamm, F.R.; Nelson, M.E.; Rogers, D.H. Resource Allocation in Corn Production with Water Resource Constraints; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 1993; Volume 9. [Google Scholar]
- Bralts, V.F.; Pandey, S.R.; Miller, A. Energy savings and irrigation performance of a modified center pivot irrigation system. Appl. Eng. Agric. 1994, 10, 27–36. [Google Scholar] [CrossRef]
- Mantovani, E.C.; Villalobos, F.J.; Orgaz, F.; Fereres, E. Modeling the effects of sprinkler irrigation uniformity on crop yield. Agric. Water Manag. 1995, 27, 243–257. [Google Scholar] [CrossRef]
- Vonbernuth, R.D. Uniformity design criteria under limited water. Trans. ASABE 1983, 26, 1418–1421. [Google Scholar] [CrossRef]
- Li, J.S.; Kawano, H. The areal distribution of soil moisture under sprinkler irrigation. Agric. Water Manag. 1996, 32, 29–36. [Google Scholar] [CrossRef]
- Vories, E.D.; Vonbernuth, R.D. Single nozzle sprinkler performance in wind. Trans. ASABE 1986, 29, 1325–1330. [Google Scholar] [CrossRef]
- Ascough, G.W.; Kiker, G.A. The effect of irrigation uniformity on irrigation water requirements. Water Sa 2002, 28, 235–241. [Google Scholar] [CrossRef]
- Dogan, E.; Kirnak, H.; Doyan, Z. Effect of varying the distance of collectors below a sprinkler head and travel speed on measurements of mean water depth and uniformity for a linear move irrigation sprinkler system. Biosyst. Eng. 2008, 99, 190–195. [Google Scholar] [CrossRef]
- Dukes, M.D. Effect of wind speed and pressure on linear move irrigation system uniformity. Appl. Eng. Agric. 2006, 22, 541–548. [Google Scholar] [CrossRef]
- Salvatierra-Bellido, B.; Montero-Martinez, J.; Perez-Urrestaraz, L. Development of an automatic test bench to assess sprinkler irrigation uniformity in different wind conditions. Comput. Electron. Agric. 2018, 151, 31–40. [Google Scholar] [CrossRef]
- Sanchez, I.; Faci, J.M.; Zapata, N. The effects of pressure, nozzle diameter and meteorological conditions on the performance of agricultural impact sprinklers. Agric. Water Manag. 2011, 102, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Tarjuelo, J.M.; Montero, J.; Carrion, P.A.; Honrubia, F.T.; Calvo, M.A. Irrigation uniformity with medium size sprinklers part II: Influence of wind and other factors on water distribution. Trans. ASABE 1999, 42, 677–689. [Google Scholar] [CrossRef]
- Tarjuelo, J.M.; Montero, J.; Honrubia, F.T.; Ortiz, J.J.; Ortega, J.F. Analysis of uniformity of sprinkle irrigation in a semi-arid area. Agric. Water Manag. 1999, 40, 315–331. [Google Scholar] [CrossRef]
- Vories, E.D.; Vonbernuth, R.D.; Mickelson, R.H. Simulating sprinkler performance in wind. J. Irrig. Drain. Eng.-ASCE 1987, 113, 119–130. [Google Scholar] [CrossRef]
- Zapata, N.; Playan, E.; Martinez-Cob, A.; Sanchez, I.; Faci, J.M.; Lecina, S. From on-farm solid-set sprinkler irrigation design to collective irrigation network design in windy areas. Agric. Water Manag. 2007, 87, 187–199. [Google Scholar] [CrossRef] [Green Version]
Amplitudes (kPa) | Spraying Range (m) | The CV of Sprinkler Intensity (%) | The Peak Value of Sprinkler Intensity (mm/h) | The CV of Impact Kinetic Energy Intensity (%) | The Peak Value of Impact Kinetic Energy Intensity (W/m2) |
---|---|---|---|---|---|
Constant pressure | 7 | 122 | 219 | 97 | 1.08 |
A = 20 | 8.25 | 93 | 154 | 73 | 0.76 |
A = 30 | 8.75 | 76 | 125 | 62 | 0.67 |
A = 40 | 9 | 61 | 92 | 52 | 0.57 |
A = 50 | 9.25 | 50 | 66 | 45 | 0.49 |
A = 60 | 9.25 | 43 | 52 | 38 | 0.42 |
A = 70 | 9.75 | 48 | 57 | 44 | 0.45 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Song, B.; Zhu, D. The Influence of Sinusoidal Oscillating Water Flow on Sprinkler and Impact Kinetic Energy Intensities of Laterally-Moving Sprinkler Irrigation Systems. Water 2019, 11, 1325. https://doi.org/10.3390/w11071325
Zhang K, Song B, Zhu D. The Influence of Sinusoidal Oscillating Water Flow on Sprinkler and Impact Kinetic Energy Intensities of Laterally-Moving Sprinkler Irrigation Systems. Water. 2019; 11(7):1325. https://doi.org/10.3390/w11071325
Chicago/Turabian StyleZhang, Kai, Bo Song, and Delan Zhu. 2019. "The Influence of Sinusoidal Oscillating Water Flow on Sprinkler and Impact Kinetic Energy Intensities of Laterally-Moving Sprinkler Irrigation Systems" Water 11, no. 7: 1325. https://doi.org/10.3390/w11071325
APA StyleZhang, K., Song, B., & Zhu, D. (2019). The Influence of Sinusoidal Oscillating Water Flow on Sprinkler and Impact Kinetic Energy Intensities of Laterally-Moving Sprinkler Irrigation Systems. Water, 11(7), 1325. https://doi.org/10.3390/w11071325