Reactive Transport and Removal of Nutrients and Pesticides in Engineered Porous Media
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Column Experiment
2.3. Solid Characterizations
2.4. Analysis of Aqueous Samples
3. Results and Discussion
3.1. Removal of Nitrate
3.2. Removal of Phosphate
3.3. Removal of Pesticides
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bouraoui, F.; Grizzetti, B. Modelling mitigation options to reduce diffuse nitrogen water pollution from agriculture. Sci. Total Environ. 2014, 468, 1267–1277. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.Q.; Huang, X.; Chen, H.; Godfray, H.C.J.; Wright, J.S.; Hall, J.; Gong, P.; Ni, S.Q.; Qiao, S.C.; Huang, G.R.; et al. Managing nitrogen to restore water quality in China. Nature 2019, 567, 516–520. [Google Scholar] [CrossRef] [PubMed]
- Ahiablame, L.M.; Chaubey, I.; Smith, D.R.; Engel, B.A. Effect of tile effluent on nutrient concentration and retention efficiency in agricultural drainage ditches. Agric. Water Manag. 2011, 98, 1271–1279. [Google Scholar] [CrossRef]
- Saadat, S.; Bowling, L.; Frankenberger, J.; Kladivko, E. Nitrate and phosphorus transport through subsurface drains under free and controlled drainage. Water Res. 2018, 142, 196–207. [Google Scholar] [CrossRef]
- Zhao, M.R.; Zhang, Y.; Liu, W.P.; Xu, C.; Wang, L.M.; Gan, J.Y. Estrogenic activity of lambda-cyhalothrin in the MCF-7 human breast carcinoma cell line. Environ. Toxicol. Chem. 2008, 27, 1194–1200. [Google Scholar] [CrossRef] [PubMed]
- Papadakis, E.N.; Tsaboula, A.; Kotopoulou, A.; Kintzikoglou, K.; Vryzas, Z.; Papadopoulou-Mourkidou, E. Pesticides in the surface waters of Lake Vistonis Basin, Greece: Occurrence and environmental risk assessment. Sci. Total Environ. 2015, 536, 793–802. [Google Scholar] [CrossRef] [PubMed]
- Kumwimba, M.N.; Meng, F.; Iseyemi, O.; Moore, M.T.; Zhu, B.; Wang, T.; Tang, J.L.; Ilunga, L. Removal of non-point source pollutants from domestic sewage and agricultural runoff by vegetated drainage ditches (VDDs): Design, mechanism, management strategies, and future directions. Sci. Total Environ. 2018, 639, 742–759. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.H.; Wang, G.X. Nutrient concentration variations during Oenanthe javanica growth and decay in the ecological floating bed system. J. Environ. Sci. 2010, 22, 1710–1717. [Google Scholar] [CrossRef]
- Spangler, J.T.; Sample, D.J.; Fox, L.J.; Owen, J.S., Jr.; White, S.A. Floating treatment wetland aided nutrient removal from agricultural runoff using two wetland species. Ecol. Eng. 2019, 127, 468–479. [Google Scholar] [CrossRef]
- Heikkinen, K.; Karppinen, A.; Karjalainen, S.M.; Postila, H.; Hadzic, M.; Tolkkinen, M.; Marttila, H.; Ihme, R.; Kløve, B. Long-term purification efficiency and factors affecting performance in peatland-based treatment wetlands: An analysis of 28 peat extraction sites in Finland. Ecol. Eng. 2018, 117, 153–164. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Zhang, D.Q.; Dong, J.W.; Tan, S.K. Constructed wetlands for wastewater treatment in cold climate-A review. J. Environ. Sci. 2017, 57, 293–311. [Google Scholar] [CrossRef] [PubMed]
- Azarkan, S.; Peña, A.; Draoui, K.; Sainz-Díaz, C.I. Adsorption of two fungicides on natural clays of Morocco. Appl. Clay Sci. 2016, 123, 37–46. [Google Scholar] [CrossRef]
- Khalil, A.M.; Eljamal, O.; Amen, T.W.; Sugihara, Y.; Matsunaga, N. Optimized nano-scale zero-valent iron supported on treated activated carbon for enhanced nitrate and phosphate removal from water. Chem. Eng. J. 2017, 309, 349–365. [Google Scholar] [CrossRef]
- Sellner, B.M.; Hua, G.H.; Ahiablame, L.M.; Trooien, T.P. Evaluation of industrial by-products and natural minerals for phosphate adsorption from subsurface drainage. Environ. Technol. 2019, 40, 756–767. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Yin, W.; Li, Y.; Li, P.; Wu, J.; Jiang, G.; Gu, J.; Liang, H. Column study of enhanced Cr(VI) removal and longevity by coupled abiotic and biotic processes using Fe0 and mixed anaerobic culture. Water Res. 2017, 122, 536–544. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, K.; Fukumoto, N.; Moriyama, S.; Hirajima, T. Sorption characteristics of fluoride on to magnesium oxide-rich phases calcined at different temperatures. J. Hazard. Mater. 2011, 191, 240–248. [Google Scholar] [CrossRef]
- Diao, Z.H.; Qian, W.; Lei, Z.X.; Kong, L.J.; Du, J.J.; Liu, H.; Yang, J.W.; Pu, S.Y. Insights on the nitrate reduction and norfloxacin oxidation over a novel nanoscale zero valent iron particle: Reactivity, products, and mechanism. Sci. Total Environ. 2019, 660, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Zhang, Y.; Dai, C. Removal of phosphate from aqueous solution using nanoscale zerovalent iron (nZVI). Colloids Surf. Physicochem. Eng. Asp. 2014, 457, 433–440. [Google Scholar] [CrossRef]
- Waclawek, S.; Nosek, J.; Cadrova, L. Use of various zero valent irons for degradation of chlorinated ethenes and ethanes. Ecol. Chem. Eng. S 2015, 4, 577–587. [Google Scholar] [CrossRef]
- Long, Y.; Zhang, C.; Du, Y. Enhanced reductive dechlorination of polychlorinated biphenyl-contaminated soil by in-vessel anaerobic composting with zero-valent iron. Environ. Sci. Pollut. Res. 2014, 6, 4783–4792. [Google Scholar] [CrossRef]
- Atia, A.A.; Donia, A.M.; Hussien, R.A.; Rashad, R.T. Efficient adsorption of malathion from different media using thermally treated kaolinite. Desalin. Water Treat. 2011, 30, 178–185. [Google Scholar] [CrossRef]
- Hua, G.H.; Salo, M.W.; Schmit, C.G.; Hay, C.H. Nitrate and phosphate removal from agricultural subsurface drainage using laboratory woodchip bioreactors and recycled steel byproduct filters. Water Res. 2016, 102, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Almeelbi, T.; Bezbaruah, A. Aqueous phosphate removal using nanoscale zero-valent iron. J. Nanopart. Res. 2012, 14, 900–914. [Google Scholar] [CrossRef]
- García-Jaramillo, M.; Cox, L.; Cornejo, J.; Hermosin, M.C. Effect of soil organic amendments on the behavior of bentazone and tricyclazole. Sci. Total Environ. 2014, 466, 906–913. [Google Scholar] [CrossRef] [PubMed]
- Huggins, T.M.; Haeger, A.; Biffinger, J.C.; Ren, Z.J. Granular biochar compared with activated carbon for wastewater treatment and resource recovery. Water Res. 2016, 94, 225–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sleiman, N.; Deluchat, V.; Wazne, M.; Mallet, M.; Courtin-Nomade, A.; Kazpard, V.; Baudu, M. Phosphate removal from aqueous solution using ZVI/sand bed reactor: Behavior and mechanism. Water Res. 2016, 99, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Tsochatzis, E.D.; Tzimou-Tsitouridou, R.; Menkissoglu-Spiroudi, U.; Karpouzas, D.G.; Katsantonis, D. Laboratory and field dissipation of penoxsulam, tricyclazole and profoxydim in rice paddy systems. Chemosphere 2013, 91, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.J.; Blowes, D.W.; Ptacek, C.J. Laboratory development of permeable reactive mixtures for the removal of phosphorus from onsite wastewater disposal systems. Environ. Sci. Technol. 1998, 32, 2308–2316. [Google Scholar] [CrossRef]
- Simpson, D.R. Biofilm processes in biologically active carbon water purification. Water Res. 2008, 42, 2839–2848. [Google Scholar] [CrossRef] [PubMed]
- Strang, T.J.; Wareham, D.G. Phosphorus removal in a waste-stabilization pond containing limestone rock filters. J. Environ. Eng. Sci. 2006, 5, 447–457. [Google Scholar] [CrossRef] [Green Version]
- Cui, N.X.; Chen, G.F.; Liu, Y.Q.; Zhou, L.; Cai, M.; Song, X.F.; Zou, G.Y. Comparison of two different ecological floating bio-reactors for pollution control in hyper-eutrophic freshwater. Sci. Rep. 2018, 8, 14306. [Google Scholar] [CrossRef] [PubMed]
- Westerhoff, P.; James, J. Nitrate removal in zero-valent iron packed columns. Water Res. 2003, 37, 1818–1830. [Google Scholar] [CrossRef]
- Hwang, Y.H.; Kim, D.G.; Shin, H.S. Mechanism study of nitrate reduction by nano zero valent iron. J. Hazard. Mater. 2011, 185, 1513–1521. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.M.; Lv, L.; Zhang, W.M.; Du, Q.; Pan, B.C.; Yang, L.; Zhang, Q.X. Nitrate reduction using nanosized zero-valent iron supported by polystyrene resins: Role of surface functional groups. Water Res. 2011, 45, 2191–2198. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.P.; Douglas, G.B.; Pu, L.; Zhao, Q.L.; Tang, Y.; Xu, W.; Luo, B.H.; Hong, W.; Cui, L.L.; Ye, Z.F. Zero-valent iron-facilitated reduction of nitrate: Chemical kinetics and reaction pathways. Sci. Total Environ. 2017, 598, 1140–1150. [Google Scholar] [CrossRef] [PubMed]
- Choe, S.; Liljestrand, H.M.; Khim, J. Nitrate reduction by zero-valent iron under different pH regimes. Appl. Geochem. 2004, 19, 335–342. [Google Scholar] [CrossRef]
- Huang, Y.H.; Zhang, T.C.; Shea, P.J.; Comfort, S.D. Effects of oxide coating and selected cations on nitrate reduction by iron metal. J. Environ. Qual. 2003, 32, 1306–1315. [Google Scholar] [CrossRef]
- Tang, Y.N.; Zhou, C.; Ziv-El, M.; Rittmann, B.E. A pH-control model for heterotrophic and hydrogen-based autotrophic denitrification. Water Res. 2011, 45, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Karageorgiou, K.; Paschalis, M.; Anastassakis, G.N. Removal of phosphate species from solution by adsorption onto calcite used as natural adsorbent. J. Hazard. Mater. 2007, 139, 447–452. [Google Scholar] [CrossRef]
- Liu, Y.; Sheng, X.; Dong, Y.H.; Ma, Y.J. Removal of high-concentration phosphate by calcite: Effect of sulfate and pH. Desalination 2012, 289, 66–71. [Google Scholar] [CrossRef]
- Lyngsie, G.; Penn, C.J.; Pedersen, H.L.; Borggaard, O.K.; Hansen, H.C.B. Modelling of phosphate retention by Ca- and Fe-rich filter materials under flow-through conditions. Ecol. Eng. 2015, 75, 93–102. [Google Scholar] [CrossRef]
- Lyngsie, G.; Penn, C.J.; Hansen, H.C.B.; Borggaard, O.K. Phosphate sorption by three potential filter materials as assessed by isothermal titration calorimetry. J. Environ. Manag. 2014, 143, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.J.; Zhao, Z.Y.; Li, J.; Wang, J.; Qi, Y. An anaerobic two-layer permeable reactive biobarrier for the remediation of nitrate-contaminated groundwater. Water Res. 2013, 47, 5977–5985. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Li, X.M.; Liu, J.D. Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings. Water Res. 2004, 38, 1318–1326. [Google Scholar] [CrossRef] [PubMed]
- Aydin, S. Removal of organophosphorus pesticides from aqueous solution by magnetic Fe3O4/red mud-nanoparticles. Water Environ. Res. 2016, 88, 2275–2284. [Google Scholar] [CrossRef]
- Uchimiya, M.; Wartelle, L.H.; Boddu, V.M. Sorption of triazine and organophosphorus pesticides on soil and biochar. J. Agric. Food Chem. 2012, 60, 2989–2997. [Google Scholar] [CrossRef] [PubMed]
- Feleke, Z.; Sakakibara, Y. Nitrate and pesticide removal by a combined bioelectrochemical/adsorption process. Water Sci. Technol. 2001, 43, 25–33. [Google Scholar] [CrossRef] [PubMed]
Exp. # | Materials | NaN3 Input | Bulk Density (g/cm3) | Porosity (%) | Pore Velocity (cm/h) | Hydraulic Residence Time (h) |
---|---|---|---|---|---|---|
1 | Quartz sand | No | 1.62 | 39.05 | 1.06 | 5.0 |
2 | Iron fillings | No | 3.25 | 58.47 | 1.09 | 4.9 |
3 | Iron fillings | No | 3.16 | 59.64 | 0.96 | 5.2 |
4 | Iron fillings | Yes | 3.05 | 61.04 | 1.02 | 5.0 |
5 | Limestone | No | 1.62 | 39.74 | 1.12 | 4.5 |
6 | Limestone | No | 1.57 | 41.46 | 1.02 | 5.0 |
7 | Limestone | Yes | 1.60 | 40.64 | 1.10 | 5.0 |
Column | Nitrate | Phosphate | Tricyclazole | Isoprothiolane | Malathion | |||||
---|---|---|---|---|---|---|---|---|---|---|
mg/kg | % | mg/kg | % | mg/kg | % | mg/kg | % | mg/kg | % | |
Quartz sand | 230.46 | 19.20 | 1.77 | 0.95 | 0 | 0 | 4.60 | 11.10 | 5.19 | 17.44 |
Limestone | 2670.35 | 45.03 | 155.21 | 17.58 | 2.22 | 1.11 | 51.81 | 26.97 | 166.77 | 91.63 |
Iron fillings | 1400.37 | 35.83 | 416.05 | 68.20 | 30.07 | 22.02 | 35.23 | 26.96 | 138.91 | 100.00 |
Sample | Elements (wt%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Fe | O | P | N | C | Ca | Si | Al | Mg | |
Original iron fillings | 80.89 | 3.54 | 0.65 | 0.93 | 9.76 | 0.16 | 2.88 | 0.70 | 0.49 |
Post- iron fillings (influent) | 75.45 | 11.33 | 1.30 | 1.01 | 7.78 | 0.17 | 2.00 | 0.68 | 0.27 |
Post- iron fillings (effluent) | 65.59 | 19.47 | 0.87 | 1.17 | 8.80 | 0.14 | 2.44 | 0.91 | 0.62 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, D.; Zhuang, J.; Chen, X. Reactive Transport and Removal of Nutrients and Pesticides in Engineered Porous Media. Water 2019, 11, 1316. https://doi.org/10.3390/w11071316
Tong D, Zhuang J, Chen X. Reactive Transport and Removal of Nutrients and Pesticides in Engineered Porous Media. Water. 2019; 11(7):1316. https://doi.org/10.3390/w11071316
Chicago/Turabian StyleTong, Dongli, Jie Zhuang, and Xijuan Chen. 2019. "Reactive Transport and Removal of Nutrients and Pesticides in Engineered Porous Media" Water 11, no. 7: 1316. https://doi.org/10.3390/w11071316
APA StyleTong, D., Zhuang, J., & Chen, X. (2019). Reactive Transport and Removal of Nutrients and Pesticides in Engineered Porous Media. Water, 11(7), 1316. https://doi.org/10.3390/w11071316