Parameterization of NSGA-II for the Optimal Design of Water Distribution Systems
Abstract
:1. Introduction
2. Current Understanding of NSGA-II
3. Methodology
3.1. Problem Formulation
3.2. Proposed Methodology of Investigating the Parameterization of NSGA-II
4. Case Studies
4.1. New York Tunnel Network (NYT)
4.2. Hanoi Network (HAN)
4.3. Balerma Irrigation Network (BIN)
4.4. Experimental Setup
5. Results and Discussion
5.1. The NYT Design Problem
5.2. The HAN Design Problem
5.3. The BIN Design Problem
5.4. A Further Experiment on the BIN Design Problem
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mala-Jetmarova, H.; Barton, A.; Bagirov, A. A history of water distribution systems and their optimisation. Water Sci. Technol.-Water Supply 2015, 15, 224–235. [Google Scholar] [CrossRef]
- Savic, D.A.; Walters, G.A. Genetic Algorithms for Least-Cost Design of Water Distribution Networks. J. Water Resour. Plan. Manag. ASCE 1997, 123, 67–77. [Google Scholar] [CrossRef]
- Dandy, G.C.; Simpson, A.R.; Murphy, L.J. An Improved Genetic Algorithm for Pipe Network Optimization. Water Resour. Res. 1996, 32, 449–458. [Google Scholar] [CrossRef] [Green Version]
- Walters, G.A.; Lohbeck, T. Optimal Layout of Tree Networks Using Genetic Algorithms. Eng. Optim. 1993, 22, 27–48. [Google Scholar] [CrossRef]
- Walski, T.M. The Wrong Paradigm, Why Water Distribution Optimization Doesn’t Work. J. Water Resour. Plan. Manag. ASCE 2001, 127, 203–205. [Google Scholar] [CrossRef]
- Prasad, T.D.; Park, N.-S. Multiobjective Genetic Algorithms for Design of Water Distribution Networks. J. Water Resour. Plan. Manag. ASCE 2004, 130, 73–82. [Google Scholar] [CrossRef]
- Kanakoudis, V.K. Vulnerability based management of water resources systems. J. Hydroinform. 2004, 6, 133–156. [Google Scholar] [CrossRef]
- Halhal, D.; Walters, G.; Ouazar, D.; Savic, D. Water Network Rehabilitation with Structured Messy Genetic Algorithm. J. Water Resour. Plan. Manag. ASCE 1997, 123, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Khu, S.-T.; Keedwell, E. Introducing more choices (flexibility) in the upgrading of water distribution networks: the New York city tunnel network example. Eng. Optim. 2005, 37, 291–305. [Google Scholar] [CrossRef]
- Fu, G.; Kapelan, Z.; Kasprzyk, J.R.; Reed, P. Optimal Design of Water Distribution Systems Using Many-Objective Visual Analytics. J. Water Resour. Plan. Manag. ASCE 2013, 139, 624–633. [Google Scholar] [CrossRef] [Green Version]
- Woodruff, M.J.; Reed, P.M.; Simpson, T.W. Many objective visual analytics: rethinking the design of complex engineered systems. Struct. Multidiscip. Optim. 2013, 48, 201–219. [Google Scholar] [CrossRef]
- Reed, P.M.; Hadka, D.; Herman, J.D.; Kasprzyk, J.R.; Kollat, J.B. Evolutionary multiobjective optimization in water resources: The past, present; future. Adv. Water Resour. 2013, 51, 438–456. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Vrugt, J.A.; Robinson, B.A. Improved Evolutionary Optimization from Genetically Adaptive Multimethod Search. Proc. Natl. Acad. Sci. USA 2007, 104, 708–711. [Google Scholar] [CrossRef]
- Hadka, D.; Reed, P. Borg: An Auto-Adaptive Many-Objective Evolutionary Computing Framework. Evol. Comput. 2013, 21, 231–259. [Google Scholar] [CrossRef]
- Wang, Q.; Savić, D.A.; Kapelan, Z. GALAXY: A new hybrid MOEA for the optimal design of Water Distribution Systems. Water Resour. Res. 2017, 53, 1997–2015. [Google Scholar] [CrossRef] [Green Version]
- Maier, H.R.; Kapelan, Z.; Kasprzyk, J.; Kollat, J.; Matott, L.S.; Cunha, M.C.; Dandy, G.C.; Gibbs, M.S.; Keedwell, E.; Marchi, A. Evolutionary algorithms and other metaheuristics in water resources: Current status, research challenges and future directions. Environ. Model. Softw. 2014, 62, 271–299. [Google Scholar] [CrossRef] [Green Version]
- Cisty, M.; Bajtek, Z.; Celar, L. A two-stage evolutionary optimization approach for an irrigation system design. J. Hydroinform. 2017, 19, 115–122. [Google Scholar] [CrossRef]
- Mala-Jetmarova, H.; Sultanova, N.; Savic, D. Lost in Optimisation of Water Distribution Systems? A Literature Review of System Design. Water 2018, 10, 307. [Google Scholar] [CrossRef]
- Deb, K.; Agrawal, R.B. Simulated binary crossover for continuous search space. Complex Syst. 1995, 9, 115–148. [Google Scholar]
- Zheng, F.; Qi, Z.; Bi, W.; Zhang, T.; Yu, T.; Shao, Y. Improved Understanding on the Searching Behavior of NSGA-II Operators Using Run-Time Measure Metrics with Application to Water Distribution System Design Problems. Water Resour. Manag. 2017, 31, 1121–1138. [Google Scholar] [CrossRef]
- Zheng, F.; Zecchin, A.C.; Maier, H.R.; Simpson, A.R. Comparison of the searching behavior of NSGA-II, SAMODE; borg MOEAs applied to water distribution system design problems. J. Water Resour. Plan. Manag. ASCE 2016, 142, 04016017. [Google Scholar] [CrossRef]
- Bi, W.; Dandy, G.C.; Maier, H.R. Use of Domain Knowledge to Increase the Convergence Rate of Evolutionary Algorithms for Optimizing the Cost and Resilience of Water Distribution Systems. J. Water Resour. Plan. Manag. ASCE 2016, 142, 04016027. [Google Scholar] [CrossRef]
- Wang, Q.; Guidolin, M.; Savic, D.; Kapelan, Z. Two-Objective Design of Benchmark Problems of a Water Distribution System via MOEAs: Towards the Best-Known Approximation of the True Pareto Front. J. Water Resour. Plan. Manag. ASCE 2015, 141, 04014060. [Google Scholar] [CrossRef] [Green Version]
- Asadzadeh, M.; Tolson, B. Hybrid Pareto archived dynamically dimensioned search for multi-objective combinatorial optimization: application to water distribution network design. J. Hydroinform. 2012, 14, 192–205. [Google Scholar] [CrossRef] [Green Version]
- Raad, D.; Sinske, A.; van Vuuren, J. Robust multi-objective optimization for water distribution system design using a meta-metaheuristic. Int. Trans. Oper. Res. 2009, 16, 595–626. [Google Scholar] [CrossRef]
- Olsson, R.J.; Kapelan, Z.; Savic, D.A. Probabilistic building block identification for the optimal design and rehabilitation of water distribution systems. J. Hydroinform. 2009, 11, 89–105. [Google Scholar] [CrossRef] [Green Version]
- Jayaram, N.; Srinivasan, K. Performance Based Optimal Design and Rehabilitation of Water Distribution Networks Using Life-Cycle Costing. Water Resour. Res. 2008, 44, W01417. [Google Scholar] [CrossRef]
- Perelman, L.; Ostfeld, A.; Salomons, E. Cross Entropy multiobjective optimization for water distribution systems design. Water Resour. Res. 2008, 44, W09413. [Google Scholar] [CrossRef]
- Farmani, R.; Walters, G.; Savic, D. Evolutionary multi-objective optimization of the design and operation of water distribution network: total cost vs. reliability vs. water quality. J. Hydroinform. 2006, 8, 165–179. [Google Scholar] [CrossRef]
- Farmani, R.; Walters, G.A.; Savic, D.A. Trade-Off between Total Cost and Reliability for Anytown Water Distribution Network. J. Water Resour. Plan. Manag. ASCE 2005, 131, 161–171. [Google Scholar] [CrossRef]
- Farmani, R.; Savic, D.A.; Walters, G.A. Evolutionary multi-objective optimization in water distribution network design. Eng. Optim. 2005, 37, 167–183. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Zhou, Q.; Lei, X.; Savić, D.A. Comparison of multi-objective optimization methods applied to urban drainage adaptation problems. J. Water Resour. Plan. Manag. ASCE 2018, 144, 04018070. [Google Scholar] [CrossRef]
- Schaake, J.C.; Lai, D. Linear Programming and Dynamic Programming Application to Water Distribution Network Design; Report No. 116; Hydrodynamics Laboratory, Department of Civil Engineering, Massachusetts Institute of Technology: Cambridge, MA, USA, 1969. [Google Scholar]
- Fujiwara, O.; Khang, D.A. Two-phase decomposition method for optimal design of looped water distribution networks. Water Resour. Res. 1990, 26, 539–549. [Google Scholar] [CrossRef]
- Reca, J.; Martínez, J. Genetic algorithms for the design of looped irrigation water distribution networks. Water Resour. Res. 2006, 42, W05416. [Google Scholar] [CrossRef]
- Zheng, F.; Zecchin, A.C.; Simpson, A.R. Self-Adaptive Differential Evolution Algorithm Applied to Water Distribution System Optimization. J. Comput. Civ. Eng. 2013, 27, 148–158. [Google Scholar] [CrossRef] [Green Version]
- Hadka, D.; Reed, P. Diagnostic Assessment of Search Controls and Failure Modes in Many-Objective Evolutionary Optimization. Evol. Comput. 2012, 20, 423–452. [Google Scholar] [CrossRef] [Green Version]
Reference | Cases | Number of | Range of | |||||
---|---|---|---|---|---|---|---|---|
NDVs | PS | Gen | Pc | Pm | DIc | DIm | ||
[18] | 1 | 454 | N/A | N/A | 0.93–0.98 | 0.001–0.05 | N/A | N/A |
[21] | 6 | 21–454 | 240–800 | 2500 | 0.9 | 1/NDVs | 15 | 7 |
[22] | 6 | 21–454 | 240–800 | 2500 | 0.9 | 1/NDVs | 15 | 7 |
[23] | 5 | 341–274 | 240–1000 | 2500 | 0.9 | 1/NDVs | 15 | 7 |
[24] | 12 | 8–567 | 40–800 | 250–10,000 | 0.9 | 1/NDVs | 15 | 7 |
[25] | 5 | 21–454 | 50–100 | 40–10,000 | 0.9 | 1/NDVs | 20 | 20 |
[26] | 3 | 8–34 | 100 | 100 | N/A | 0.01 | N/A | N/A |
[27] | 3 | 21–632 | 200 | 1000–1250 | N/A | N/A | N/A | N/A |
[28] | 1 | 14 | 500 | 10,000 | 0.8 | 0.03 | 20 | 100 |
[29] | 1 | 21 | 200–1000 | 840–3360 | N/A | 0.075 | N/A | N/A |
[30] | 1 | 112 | 100 | 5000 | N/A | N/A | N/A | N/A |
[31] | 1 | 112 | 100 | 5000 | N/A | N/A | N/A | N/A |
[32] | 3 | 21–567 | 100 | 1000–3000 | 0.9 | 0.03 | N/A | N/A |
PS | DIc | DIm | Strategy I | Strategy II | ||||
---|---|---|---|---|---|---|---|---|
Min | Avg | Freq * | Min | Avg | Freq * | |||
400 | 10 | 10 | 1.9245 | 1.9273 | 1 | 1.9220 | 1.9242 | 1 |
400 | 10 | 30 | 1.9268 | 1.9389 | 0.3 | 1.9232 | 1.9267 | 0.8 |
400 | 30 | 10 | 1.9231 | 1.9277 | 0.8 | 1.9216 | 1.9248 | 1 |
400 | 30 | 30 | 1.9357 | 1.9572 | 0 | 1.9255 | 1.9275 | 0.9 |
1000 | 10 | 10 | 1.9236 | 1.9274 | 0.9 | 1.9222 | 1.9242 | 1 |
1000 | 10 | 30 | 1.9239 | 1.9294 | 0.7 | 1.9235 | 1.9253 | 1 |
1000 | 30 | 10 | 1.9215 | 1.9263 | 0.9 | 1.9219 | 1.9244 | 1 |
1000 | 30 | 30 | 1.9275 | 1.9324 | 0.2 | 1.9243 | 1.9266 | 1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Wang, L.; Huang, W.; Wang, Z.; Liu, S.; Savić, D.A. Parameterization of NSGA-II for the Optimal Design of Water Distribution Systems. Water 2019, 11, 971. https://doi.org/10.3390/w11050971
Wang Q, Wang L, Huang W, Wang Z, Liu S, Savić DA. Parameterization of NSGA-II for the Optimal Design of Water Distribution Systems. Water. 2019; 11(5):971. https://doi.org/10.3390/w11050971
Chicago/Turabian StyleWang, Qi, Libing Wang, Wen Huang, Zhihong Wang, Shuming Liu, and Dragan A. Savić. 2019. "Parameterization of NSGA-II for the Optimal Design of Water Distribution Systems" Water 11, no. 5: 971. https://doi.org/10.3390/w11050971
APA StyleWang, Q., Wang, L., Huang, W., Wang, Z., Liu, S., & Savić, D. A. (2019). Parameterization of NSGA-II for the Optimal Design of Water Distribution Systems. Water, 11(5), 971. https://doi.org/10.3390/w11050971