Determination of Spatial and Temporal Variability of Soil Hydraulic Conductivity for Urban Runoff Modelling
Abstract
:1. Introduction
- measuring and analysing spatial and temporal variability of unsaturated hydraulic conductivity during summer season within the study plot, using mini disk infiltrometer,
- measuring and analysing spatial variability of saturated hydraulic conductivity within the study plot, using double ring infiltrometer and dual head infiltrometer.
2. Data and Methods
2.1. Study Plot
2.2. Soil Texture
2.3. Mini Disk Infiltrometer (MDI)
2.4. Double Ring Infiltrometer (DRI)
2.5. Dual Head Infiltrometer (DHI)
3. Results and Discussion
3.1. Soil Texture
3.2. Mini Disk Infiltrometer (MDI)
3.3. Double Ring Infiltrometer (DRI)
3.4. Dual Head Infiltrometer (DHI)
3.5. Comparison of the Results of Applied Measurement Techniques
3.6. Infiltration and Urban Drainage Modelling
4. Conclusions
- Both methods for measuring Ks (DHI and DRI) show an increase in its value, when moving from locations with silty clay towards locations with sandy loam soil pointing to spatial variability of Ks within a limited space. On average, results of Ks using DHI are 6.8 times higher than when using DRI;
- Multiple measurements using DRI at the same location (III) under different weather conditions (i.e., dry and wet) highlighted the temporal variability of Ks;
- Although DRI and MDI measure different types of hydraulic conductivity, their values are the most similar after estimation of Ks for MDI (i.e., results of DRI are 2.7 times higher than MDI).
- MDI measurements pointed to the spatial variability of K, with coefficient of variation ranging from 67%–89% over five measurement series. Furthermore, looking at average K for every MDI location, these vary from 11 to 73 × 10−5 cm/s, with a high coefficient of temporal variability (27%–99%);
- When exposed to drought, water repellency was formed in soil, leading to the lowest measured average K (2.6 × 10−5 cm/s). After a rain event, water repellency was diminished, establishing a normal average K (54.7 × 10−5 cm/s), with a small coefficient of variability (33%). This clearly showed the magnitude of temporal variability of K;
- MDI measurements demonstrated that under dry conditions K was on average three times higher in a freshly dug pit than on the ground level. The test was repeated after four days when conditions on both levels became similar. Previously observed difference diminished, resulting in almost the same value of average K (33 × 10−5 cm/s) in the pit and on the ground. This reinforces the theory of water repellency formation in the top soil under dry and warm weather conditions.
Author Contributions
Funding
Conflicts of Interest
References
- Butler, D.; James Digman, C.; Makropoulos, C.; Davies, J. Urban Drainage, 4th ed.; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Radinja, M.; Banovec, P.; Comas Matas, J.; Atanasova, N. Modelling and Evaluating Impacts of Distributed Retention and Infiltration Measures on Urban Runoff. Acta Hydrotech. 2017, 30, 51–64. [Google Scholar]
- Šraj, M.; Dirnbek, L.; Brilly, M. The influence of effective rainfall on modelled runoff hydrograph. J. Hydrol. Hydromech. 2010, 58, 3–14. [Google Scholar] [CrossRef]
- Rossman, L. Storm Water Management Model User’s Manual Version 5.1; US EPA Office of Research and Development: Washington, DC, USA, 2015.
- Duan, W.; He, B.; Takara, K.; Luo, P.; Nover, D.; Hu, M. Impacts of climate change on the hydro-climatology of the upper Ishikari river basin, Japan. Environ. Earth Sci. 2017, 76, 490. [Google Scholar] [CrossRef]
- Zhou, Q. A Review of Sustainable Urban Drainage Systems Considering the Climate Change and Urbanization Impacts. Water 2014, 6, 976–992. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, T.D.; Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.L.; et al. SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surrounding urban drainage. Urban Water J. 2015, 12, 525–542. [Google Scholar] [CrossRef]
- Gadi, V.K.; Tang, Y.-R.; Das, A.; Monga, C.; Garg, A.; Berretta, C.; Sahoo, L. Spatial and temporal variation of hydraulic conductivity and vegetation growth in green infrastructures using infiltrometer and visual technique. Catena 2017, 155, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Petrucci, G.; De Bondt, K.; Claeys, P. Toward better practices in infiltration regulations for urban stormwater management. Urban Water J. 2017, 14, 546–550. [Google Scholar] [CrossRef]
- Deb, S.K.; Shukla, M.K. Variability of hydraulic conductivity due to multiple factors. Am. J. Environ. Sci. 2012, 8, 489–502. [Google Scholar] [CrossRef]
- Fodor, N.; Sándor, R.; Orfanus, T.; Lichner, L.; Rajkai, K. Evaluation method dependency of measured saturated hydraulic conductivity. Geoderma 2011, 165, 60–68. [Google Scholar] [CrossRef]
- Kanso, T.; Tedoldi, D.; Gromaire, M.-C.; Ramier, D.; Saad, M.; Chebbo, G. Horizontal and Vertical Variability of Soil Hydraulic Properties in Roadside Sustainable Drainage Systems (SuDS)—Nature and Implications for Hydrological Performance Evaluation. Water 2018, 10, 987. [Google Scholar] [CrossRef]
- Das Gupta, S.; Mohanty, B.P.; Köhne, J.M. Soil Hydraulic Conductivities and their Spatial and Temporal Variations in a Vertisol. Soil Sci. Soc. Am. J. 2006, 70, 1872–1881. [Google Scholar] [CrossRef]
- Bockhorn, B.; Klint, K.E.S.; Locatelli, L.; Park, Y.-J.; Binning, P.J.; Sudicky, E.; Bergen Jensen, M. Factors affecting the hydraulic performance of infiltration based SUDS in clay. Urban Water J. 2017, 14, 125–133. [Google Scholar] [CrossRef]
- Galbraith, J.M. Human-altered and human-transported (HAHT) soils in the U.S. soil classification system. Soil Sci. Plant Nutr. 2018, 64, 190–199. [Google Scholar] [CrossRef]
- Ghosh, B.; Pekkat, S. A critical evaluation of measurement-induced variability in infiltration characteristics for a river sub-catchment. Measurement 2019, 132, 47–59. [Google Scholar] [CrossRef]
- Robichaud, P.R.; Lewis, S.; Ashmun, L. New Procedure for Sampling Infiltration to Assess Post-fire Soil Water Repellency; Research Note RMRS-RN-33; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2008.
- Köhne, J.M.; Júnior, J.A.; Köhne, S.; Tiemeyer, B.; Lennartz, B.; Kruse, J. Double-ring and tension infiltrometer measurements of hydraulic conductivity and mobile soil regions. Pesqui. Agropecu. Trop. 2011, 41, 336–347. [Google Scholar]
- ARSO Meteorological Achive. Available online: http://www.meteo.si/met/sl/archive/ (accessed on 5 July 2018).
- Premru, U. Tolmač za list Ljubljana: L 33-66. Osnovna geološka karta SFRJ 1: 100 000 ([Interpretation of sheet Ljubljana: L 33-66. Elementary geological map SFRJ 1: 100 000]; Zvezni geološki zavod: Belgrade, Serbia, 1983. [Google Scholar]
- Vrščaj, B.; Kralj, T. Slovenian soil classification and WRB. In The Soils of Slovenia; Springer: Berlin, Germany, 2017; ISBN 9789401785846. [Google Scholar]
- USDA. Soil Survey Manual; Government Printing Office: Washington, DC, USA, 2017; ISBN 978-1410204172.
- Ritchey, E.L.; Mcgrath, J.M.; Gehring, D. Determining Soil Texture by Feel; Agriculture and Natural Resources Publication 139; University of Kentucky, College of Agriculture, Food and Environment: Lexington, KY, USA, 2015. [Google Scholar]
- Thien, S.J. A flow diagram for teaching texture-by-feel analysis. J. Agron. Educ. 1979, 8, 54–55. [Google Scholar]
- METER Group Inc. Mini Disk Infiltrometer; METER Group Inc.: Pullman, WA, USA, 2018. [Google Scholar]
- Zhang, R. Determination of Soil Sorptivity and Hydraulic Conductivity from the Disk Infiltrometer. Soil Sci. Soc. Am. J. 1997, 61, 1024–1030. [Google Scholar] [CrossRef]
- Philip, J.R. The theory of infiltration: 1. The infiltration equation and its solution. Soil Sci. 1957, 83, 345–358. [Google Scholar] [CrossRef]
- Carsel, R.F.; Parrish, R.S. Developing joint probability distributions of soil water retention characteristics. Water Resour. Res. 1988, 24, 755–769. [Google Scholar] [CrossRef]
- Kutilek, M.; Nielsen, D.R. Soil Hydrology; Catena-Verlag: Cremlingen-Destedt, Germany, 1994. [Google Scholar]
- ARSO Temperature and Condition of Soil. Available online: http://meteo.arso.gov.si/met/sl/agromet/recent/tsoil (accessed on 5 July 2018).
- Guide to Meteorological Instruments and Methods of Observation; WMO-No. 8; World Meteorological Organization: Geneva, Switzerland, 2012.
- Demšar, J.; Curk, T.; Erjavec, A.; Hočevar, T.; Milutinovič, M.; Možina, M.; Polajnar, M.; Toplak, M.; Starič, A.; Štajdohar, M.; et al. Orange: data mining toolbox in Python. J. Mach. Learn. Res. 2013, 14, 2349–2353. [Google Scholar]
- Double Ring Infiltrometer Manual; Eijkelkamp: Giesbeek, The Netherlands, 2015.
- Soil Survey Staff. Soil Survey Field and Laboratory Methods Manual; U.S. Department of Agriculture, Natural Resources Conservation Service: Lincoln, NE, USA, 2014.
- Reynolds, W.D.; Elrick, D.E. Ponded Infiltration From a Single Ring: I. Analysis of Steady Flow. Soil Sci. Soc. Am. J. 1990, 54, 1233–1241. [Google Scholar] [CrossRef]
- Youngs, E.G.; Leeds-Harrison, P.B.; Elrick, D.E. The hydraulic conductivity of low permeability wet soils used as landfill lining and capping material: analysis of pressure infiltrometer measurements. Soil Technol. 1995, 8, 153–160. [Google Scholar] [CrossRef]
- Elrick, D.E.; Reynolds, W.D.; Tan, K.A. Hydraulic Conductivity Measurements in the Unsaturated Zone Using Improved Well Analyses. Groundw. Monit. Remediat. 1989, 9, 184–193. [Google Scholar] [CrossRef]
- METER Group Inc. SATURO; METER Group Inc.: Pullman, WA, USA, 2017. [Google Scholar]
- Wacker, K.; Campbell, G.; Rivera, L. An Automated Dual-Head Infiltrometer for Measuring Field Saturated Hydraulic Conductivity Dual-head Infiltrometer Equations; Decagon Devices Inc.: Pullman, WA, USA, 2009. [Google Scholar]
- Cobos, D.; Rivera, L.; Campbell, G. Automated Dual-Head Infiltrometer for Measuring Field Saturated Hydraulic Conductivity (Kfs). Geophys. Res. Abstr. 2015, 17, EGU2015-14348. [Google Scholar]
- Demirtas, I. Effects of Post-Fire Salvage Logging on Compaction, Infiltration, Water Repellency, and Sediment Yield and the Effectiveness of Subsoiling on Skid Trails. Master’s Thesis, Michigan Technological University, Houghton, MI, USA, 2017. [Google Scholar]
- Gonzales, H.B.; Ravi, S.; Li, J.; Sankey, J.B. Ecohydrological implications of aeolian sediment trapping by sparse vegetation in drylands. Ecohydrology 2018, 11, e1986. [Google Scholar] [CrossRef]
- Ravi, S.; Wang, L.; Kaseke, K.F.; Buynevich, I.V.; Marais, E. Ecohydrological interactions within “fairy circles” in the Namib Desert: Revisiting the self-organization hypothesis. J. Geophys. Res. Biogeosci. 2017, 122, 405–414. [Google Scholar] [CrossRef] [Green Version]
- Angulo-Jaramillo, R.; Bagarello, V.; Iovino, M.; Lassabatere, L. Infiltration Measurements for Soil Hydraulic Characterization; Springer International Publishing: Cham, Switzerland, 2016; ISBN 9783319317885. [Google Scholar]
- Nimmo, J.R.; Schmidt, K.M.; Perkins, K.S.; Stock, J.D. Rapid Measurement of Field-Saturated Hydraulic Conductivity for Areal Characterization. Vadose Zone. J. 2009, 8, 142–149. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Zema, D.A.; Plaza-Álvarez, P.A.; Zupanc, V.; Baartman, J.; Sagra, J.; González-Romero, J.; Moya, D.; de las Heras, J. Effects of Different Land Uses (Abandoned Farmland, Intensive Agriculture and Forest) on Soil Hydrological Properties in Southern Spain. Water 2019, 11, 503. [Google Scholar] [CrossRef]
- DeBano, L.F. Water Repellent Soils: A State-of-the-art; General Technical Report PSW-GTR-46; U.S. Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station: Berkeley, CA, USA, 1981.
- Debano, L.F. Water repellency in soils: A historical overview. J. Hydrol. 2000, 231–232, 4–32. [Google Scholar] [CrossRef]
- de Jonge, L.W.; Jacobsen, O.H.; Moldrup, P. Soil Water Repellency: Effects of Water Content, Temperature, and Particle Size. Soil Sci. Soc. Am. J. 1999, 63, 437. [Google Scholar] [CrossRef]
- Leelamanie, D.A.L.; Karube, J. Effects of organic compounds, water content and clay on the water repellency of a model sandy soil. Soil Sci. Plant Nutr. 2007, 53, 711–719. [Google Scholar] [CrossRef] [Green Version]
- Stolte, J.; Van Venrooij, B.; Zhang, G.; Trouwborst, K.O.; Liu, G.; Ritsema, C.J.; Hessel, R. Land-use induced spatial heterogeneity of soil hydraulic properties on the Loess Plateau in China. Catena 2003, 54, 59–76. [Google Scholar] [CrossRef]
- Lichner, L.; Orfánus, T.; Nováková, K.; Miloslav, Š.Í.R.; Tesař, M. The impact of vegetation on hydraulic conductivity of sandy soil. Soil Water Res. 2007, 2, 59–66. [Google Scholar] [CrossRef]
- Zhou, X.; Lin, H.S.; White, E.A. Surface soil hydraulic properties in four soil series under different land uses and their temporal changes. Catena 2008, 73, 180–188. [Google Scholar] [CrossRef]
- Rivera, L.D. Comparing the Automated Dual-Head Analysis from a Single-Ring Infiltrometer with a Double-Ring Infiltrometer. In Proceedings of the Managing Global Resources for a Secure Future, 2017 Annual Meeting, Tampa, FL, USA, 22–25 October 2017; pp. 1–4. [Google Scholar]
MEASUREMENT SERIES | TEMPORAL VARIAB. | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
No. 1 | No. 2 | No. 3 | No. 4. | No. 5 | No. 6 | Aver. | St. dev. | CV | ||
K_D_D0 _12.8.18 | K_D_D0 _20.7.18 | K_D_D10 _20.7.18 | K_M_D0 _24.7.18 | K_M_D10 _24.7.18 | K_W_D0 _14.8.18 | without No. 1 | ||||
(× 10−5 cm/s) | (× 10−5 cm/s) | (%) | ||||||||
MDI LOCATION | MDI_1 | 0.5 | 7.1 | 1.6 | 17.7 | 5 | 25.5 | 11.4 | 8.9 | 78% |
MDI_2 | 0.8 | 1.4 | 82.8 | 5.6 | 16.7 | 49 | 31.1 | 30.8 | 99% | |
MDI_3 | 1.8 | 22.3 | 12.3 | 5.5 | 0.8 | 42.2 | 16.6 | 14.7 | 88% | |
MDI_4 | 8 | 57.6 | 3.3 | 51 | 27.7 | 87.1 | 45.4 | 28.3 | 62% | |
MDI_5 | 1.4 | 3.6 | 87.4 | 5.2 | 22.5 | 68.9 | 37.5 | 34.3 | 92% | |
MDI_6 | 1.7 | 22.2 | 4.6 | 24.3 | 14.4 | 67.1 | 26.5 | 21.4 | 81% | |
MDI_7 | 1.2 | 17.6 | 64.5 | 36.6 | 46.5 | 74.4 | 47.9 | 20.1 | 42% | |
MDI_8 | 2.7 | 7 | 27 | 48.1 | 28.8 | 37.4 | 29.7 | 13.6 | 46% | |
MDI_9 | 2.2 | 56.3 | 104.3 | 71.2 | 85.1 | 49.4 | 73.3 | 19.8 | 27% | |
MDI_10 | 0.6 | 13.4 | 109.8 | 50.7 | 56.7 | 48.8 | 55.9 | 30.9 | 55% | |
MDI_11 | 5.6 | 53.3 | 122.2 | 47.7 | 45.7 | 38.6 | 61.5 | 30.7 | 50% | |
MDI_12 | 4.3 | 29.2 | 147.7 | 25.4 | 48.2 | 67.9 | 63.7 | 44.7 | 70% | |
SPATIAL VARIAB. | Aver. | 2.6 | 24.3 | 64 | 32.4 | 33.2 | 54.7 | |||
St. dev. | 2.3 | 20.7 | 52.4 | 21.7 | 24.2 | 18.2 | ||||
CV (%) | 89% | 85% | 82% | 67% | 73% | 33% |
MDI_K | MDI_Ks | DRI_Ks | DHI_Ks | DHI/MDI | DHI/DRI | MDI/DRI | ||
---|---|---|---|---|---|---|---|---|
(×10−3 cm/s) | (Factor of Difference for Ks) | |||||||
Location | I | 0.3 | 2.1 | 0.4 | 1.2 | 0.6 | 3.3 | 5.8 |
II | 0.4 | 2.5 | 1.1 | 8.8 | 3.5 | 8.1 | 2.3 | |
III | 0.4 | 2.6 | 0.9 | 7.6 | 2.9 | 8.9 | 3.0 | |
IV | 0.6 | 3.5 | 3.2 | 17.7 | 5.1 | 5.5 | 1.1 | |
Median: | 0.4 | 2.6 | 1.0 | 8.2 | 3.2 | 6.8 | 2.7 | |
St. dev.: | 0.1 | 0.5 | 1.1 | 5.9 | ||||
CV. (%): | 25% | 20% | 113% | 72% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radinja, M.; Vidmar, I.; Atanasova, N.; Mikoš, M.; Šraj, M. Determination of Spatial and Temporal Variability of Soil Hydraulic Conductivity for Urban Runoff Modelling. Water 2019, 11, 941. https://doi.org/10.3390/w11050941
Radinja M, Vidmar I, Atanasova N, Mikoš M, Šraj M. Determination of Spatial and Temporal Variability of Soil Hydraulic Conductivity for Urban Runoff Modelling. Water. 2019; 11(5):941. https://doi.org/10.3390/w11050941
Chicago/Turabian StyleRadinja, Matej, Ines Vidmar, Nataša Atanasova, Matjaž Mikoš, and Mojca Šraj. 2019. "Determination of Spatial and Temporal Variability of Soil Hydraulic Conductivity for Urban Runoff Modelling" Water 11, no. 5: 941. https://doi.org/10.3390/w11050941
APA StyleRadinja, M., Vidmar, I., Atanasova, N., Mikoš, M., & Šraj, M. (2019). Determination of Spatial and Temporal Variability of Soil Hydraulic Conductivity for Urban Runoff Modelling. Water, 11(5), 941. https://doi.org/10.3390/w11050941