Analysis of Greenhouse Gas Emissions in Centralized and Decentralized Water Reclamation with Resource Recovery Strategies in Leh Town, Ladakh, India, and Potential for Their Reduction in Context of the Water–Energy–Food Nexus
Abstract
:1. Introduction
1.1. Water Reclamation with Resource Recovery as Key Nexus Potential
1.2. GHG Emissions in India
- Study the current and planned wastewater management;
- Investigate and analyze different scenarios of possible water reclamation with resource recovery;
- Propose opportunities of improvement that can lead to energy, water, and GHG emission saving potential in the water and wastewater sector.
1.3. State-of-the-Art on GHG Emissions Estimation in the Wastewater Sector
1.3.1. Sources of CH4 Emissions
- Dissolved CH4 that is produced and transported from the collection system and that is then stripped a the WWTP headworks or in the aerobic reactors;
- Dissolved CH4 that is produced from anaerobic digestion and is left in the reject water that is recycled to the aerobic tanks, where a fraction of the dissolved CH4 is ultimately stripped;
- CH4 gas produced in anaerobic digestion that escapes via gas piping leaks;
- CH4 gas produced in anaerobic digestion that is not fully combusted in cogeneration [30] or thermally destructed by flaring;
- CH4 gas escaping from digested sludge storage facilities [29]; and
- Anaerobic lagoon treatment systems.
1.3.2. Sources of N2O Emissions
1.3.3. Other CO2, CH4, and N2O Emissions
1.4. Water Reclamation with Resource Recovery
1.4.1. Water
1.4.2. Energy
1.4.3. Nutrients
1.5. Decentralized Water Reclamation with Resource Recovery
1.5.1. Constructed Wetlands
- Several VSSF beds to remove organics and suspended solids and ensure nitrification; and
- Two or three HSSF beds to ensure denitrification and the further removal of organic and suspended solids. The pre-treatment step is necessary before the CW to avoid clogging, which is an obstruction of the free pore spaces due to the accumulation of solids. Conventional treatment settling time requires a retention time extended up to 4 h [61].
1.5.2. Fecal Sludge Management
2. Case Study Area Leh Town, Ladakh, and Basis for GHG Emission
- Lift the irrigation water from Indus river tributaries;
- Distribute drinking water to remote areas;
- Ensure heating and hot water for buildings.
2.1. Wastewater Management Situation in Leh
- Treated and disposed in situ;
- Stored temporarily and then emptied and transported to treatment off-site; or
- Transported through a sewer with wastewater and then treated off-site.
2.2. Scope of This Paper
2.3. GHG Emissions Assessment
2.3.1. GHG Emissions from Operation of the Water Reclamation with Resource Recovery Scenarios
2.3.2. GHG Emissions from Construction Works
- Assess the origin of their GHG emissions and their relative weight;
- Identify potential areas for improvement, regarding energy savings; and
- Forecast the reduction impact of future measures and monitor the results after their implementation.
2.4. GHG Reduction Potential
3. Results and Analysis
3.1. Water Supply Sector Emissions
3.2. Wastewater Sector Emissions
- Fully centralized scheme
- Combined decentralized and centralized scheme
- Combined household level and centralized scheme
3.2.1. Sludge Disposal
3.2.2. Biogas Potential and Usage
- between 1000 L/d and 2000 L/d in 11 pockets
- between 1000 L/d and 24,000 L/d in 7 pockets
- higher than 24,000 L/d in 4 pockets
3.2.3. Biogas Potential and Usage
3.2.4. GHG Emissions from Plant Construction
4. Discussion
4.1. Overcoming the Biogas Challenge
4.2. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations. World Urbanization Prospects: The 2014 Revision. Available online: https://esa.un.org/unpd/wup/Publications/Files/WUP2014-Report.pdf (accessed on 20 February 2018).
- McDonald, R.I.; Weber, K.; Padowski, J.; Flörke, M.; Schneider, C.; Green, P.A.; Montgomery, M. Water on an urban planet: Urbanization and the reach of urban water infrastructure. Glob. Environ. Chang. 2014, 27, 96–105. [Google Scholar] [CrossRef] [Green Version]
- GIZ; ICLEI. Operationalizing the Urban NEXUS Towards Resource-Efficient and Integrated Cities and Metropolitan Regions. Available online: http://www2.giz.de/wbf/4tDx9kw63gma/UrbanNEXUS_Publication_ICLEI-GIZ_2014_kl.pdf (accessed on 20 February 2018).
- Stakeholder Forum for a Sustainable Future. Review of Implementation of Agenda 21. Available online: https://sustainabledevelopment.un.org/content/documents/1126SD21 Agenda21_new.pdf (accessed on 20 February 2018).
- United Nations. New Urban Agenda, Conference on Housing and Sustainable Urban Development (Habitat III). Available online: http://habitat3.org/wp-content/uploads/NUA-English-With-Index-1.pdf (accessed on 20 February 2018).
- Hoff, H. Understanding the Nexus. In Proceedings of the 2011 Nexus Conference, Bonn, Germany, 16–18 November 2011. [Google Scholar]
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global Water Resources: Vulnerability from Climate Change and Population Growth. Science; American Association for the Advancement of Science: Washington, DC, USA, 2000. [Google Scholar] [CrossRef]
- Bates, B.C.; Kundzewicz, Z.W.; Wu, S.; Palutikof, J.P. Climate Change and Water. In Proceedings of the Intergovernmental Panel on Climate Change, Geneva, Switzerland, 1 June 2008. [Google Scholar]
- Copeland, C. Energy-Water Nexus: The Water Sector’s Energy Use. Available online: https://fas.org/sgp/crs/misc/R43200.pdf (accessed on 20 February 2018).
- Smith, K.; Liu, S.; Chang, T. Contribution of Urban Water Supply to Greenhouse Gas Emissions in China. J. Ind. Ecol. 2016, 20, 792–802. [Google Scholar] [CrossRef]
- Rothausen, S.G.S.A.; Conway, D. Greenhouse-gas emissions from energy use in the water sector. Nat. Clim. Change 2011, 1, 210–219. [Google Scholar] [CrossRef]
- UNFCCC. Reporting of GHG Data. Available online: http://unfccc.int/ghg_data/new_reporting_requirements/items/9560.php (accessed on 20 February 2018).
- Houghton, J.T.; Jenkins, G.J.; Ephraums, J.J. Climate Change: The IPCC Scientific Assessment; Intergovernmental Panel on Climate Change by Working Group I: Cambridge, UK; New York, NY, USA; Melbourne, Australia, 1990.
- UNFCCC. United Nations Framework Convention on Climate Change. Available online: https://unfccc.int/resource/docs/convkp/conveng.pdf (accessed on 20 February 2018).
- UNEP. Handbook for the Montreal Protocol on Substances that Deplete the Ozone Layer; United Nations Environment Programme: Nairobi, Kenya, 2006; Available online: http://ozone.unep.org (accessed on 20 February 2018).
- UNFCC. UNFCCC Data Interface. Available online: http://di.unfccc.int/comparison_by_category (accessed on 20 February 2018).
- UNFCCC. Guide for Peer Review of National GHG Inventories. Available online: https://unfccc.int/files/national_reports/non-annex_i_natcom/application/pdf/final_guide_for_peer_review_report_final_webuploa d.pdf (accessed on 20 February 2018).
- Anderson, T.R.; Hawkins, E.; Jones, P.D. CO2, the greenhouse effect and global warming: From the pioneering work of Arrhenius and Callendar to today’s Earth System Models. Endeavour 2016, 40, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Harvey, L.D.D. A guide to global warming potentials (GWPs). Energy Policy 1993, 21, 24–34. [Google Scholar] [CrossRef]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IGES: Hayama/Kanagawa, Japan, 2006. [Google Scholar]
- IPCC. Climate Change: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- IEA. World Energy Outlook; International Energy Agency: Paris, France, 2015. [Google Scholar]
- Cornejo, P.K. Environmental Sustainability of Wastewater Treatment Plants Integrated with Resource Recovery: The Impact of Context and Scale. Available online: http://scholarcommons.usf.edu/etd (accessed on 20 February 2018).
- Soda, S.; Iwai, Y.; Sei, K.; Shimod, Y.; Ike, M. Model analysis of energy consumption and greenhouse gas emissions of sewage sludge treatment systems with different processes and scales. Water Sci. Technol. 2010, 61, 365. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.B.G.; Malano, H.N.; Arora, M.; Nawarathna, B. Water–energy–greenhouse gas nexus of urban water systems: Review of concepts, state-of-art and methods. Resour. Conserv. Recycl. 2014, 89, 1–10. [Google Scholar] [CrossRef]
- De Graaff, M.S.; Zandvoort, M.; Roest, K.; Frijns, J.; Janse, T.; van Loosdrecht, M.C.M. Quantification of Methane and Nitrous Oxide Greenhouse Gas Emissions from the Urban Water Cycle. IWA World Water Congress. Available online: http://livelink.kwrwater.nl/livelink/livelink.exe/open/50222954 (accessed on 20 February 2018).
- Guisasola, A.; de Haas, D.; Keller, J.; Yuan, Z. Methane formation in sewer systems. Water Res. 2008, 42, 1421–1430. [Google Scholar] [CrossRef] [PubMed]
- Foley, J.; Lant, P.A.; Yuan, Z.; Keller, J.; Donlon, P. Fugitive greenhouse gas emissions from wastewater systems. In Proceedings of the 6th IWA World Water Congress, Vienna, Austria, 7–12 September 2008. [Google Scholar]
- Daelman, M.R.J.; De Baets, B.; van Loosdrecht, M.C.M.; Volcke, E.I.P. Influence of sampling strategies on the estimated nitrous oxide emission from wastewater treatment plants. Water Res. 2013, 47, 3120–3130. [Google Scholar] [CrossRef] [PubMed]
- Daelman, M.R.J.; van Voorthuizen, E.M.; van Dongen, U.G.J.M.; Volcke, E.I.P.; van Loosdrecht, M.C.M. Methane emission during municipal wastewater treatment. Water Res. 2012, 46, 3657–3670. [Google Scholar] [CrossRef] [PubMed]
- Short, M.D.; Daikeler, A.; Peters, G.M.; Mann, K.; Ashbolt, N.J.; Stuetz, R.M.; Peirson, W.L. Municipal gravity sewers: An unrecognised source of nitrous oxide. Sci. Total Environ. 2014, 468–469, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Wunderlin, P.; Mohn, J.; Joss, A.; Emmenegger, L.; Siegrist, H. Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Water Res. 2012, 46, 1027–1037. [Google Scholar] [CrossRef]
- Foley, J.; de Haas, D.; Yuan, Z.; Lant, P. Nitrous oxide generation in full-scale biological nutrient removal wastewater treatment plants. Water Res. 2010, 44, 831–844. [Google Scholar] [CrossRef]
- Holmgren, K.E.; Li, H.; Verstraete, W.; Cornel, P. State of the Art Compendium Report on Resource Recovery from Water; International Water Association (IWA) Publishers: London, UK, 2014. [Google Scholar]
- Jjemba, P.K.; Weinrich, L.A.; Cheng, W.; Giraldo, E.; Lechevallier, M.W. Regrowth of potential opportunistic pathogens and algae in reclaimed-water distribution systems. Appl. Environ. Microbiol. 2010, 76, 4169–4178. [Google Scholar] [CrossRef] [PubMed]
- Lazarova, V.; Bahri, A. Water Reuse Practices for Agriculture. Water Reuse: An International Survey of Current Practice, Issues and Needs; IWA publishing: London, UK, 2008; pp. 199–227. [Google Scholar]
- Drewes, J.E.; Khan, S.J. Water Reuse for Drinking Water Augmentation Chapter 16; Water Quality and Treatment, 6th Edition. 16.1-16.48; Edzwald, J., Ed.; American Water Works Association: Denver, CO, USA, 2011. [Google Scholar]
- Lazarova, V.; Peregrina, C.; Dauthuille, P. Water-Energy Interactions in Water Reuse; IWA Publishing: London, UK, 2012. [Google Scholar]
- CPHEEO. Manual on Sewerage and Sewage Treatment. Available online: https://www.sswm.info/sites/default/files/reference_attachments/CPHEEO-2012-Manual-on-sewerage-and-sewage-treatment.-Part-A-Engineering.pdf (accessed on 20 February 2018).
- WSP; IWMI. Recycling and Reuse of Treated Wastewater in Urban India: A Proposed Advisory and Guidance Document; International Water Management Institute: Colombo, Sri Lanka, 2016. [Google Scholar]
- Meda, A.; Lensch, D.; Schaum, C.P. Chapter 2: Energy and Water: Relations and Recovery Potential. In Water-Energy Interactions in Water Reuse; IWA Publishing: London, UK, 2012; pp. 21–35. [Google Scholar]
- Hawley, C.; Fenner, R. The potential for thermal energy recovery from wastewater treatment works in Southern England. J. Water Clim. Chang. 2012, 3, 287–299. [Google Scholar] [CrossRef]
- Schmid, F. Sewage Water: Interesting Heat Source for Heat Pumps and Chillers. Available online: http://www.bfe.admin.ch/php/modules/publikationen/stream.php?extlang=en&name=en _508290240.pdf (accessed on 20 February 2018).
- Mortensen, J.G.; Gonzaíez-Pinzo, R.; Dahm, C.N.; Wang, J.; Zeglin, L.H.; Van Horn, D.J. Advancing the Food-Energy−Water Nexus: Closing Nutrient Loops in Arid River Corridors. Environ. Sci. Technol. 2016. [Google Scholar] [CrossRef] [PubMed]
- Childers, D.L.; Corman, J.; Edwards, M.; Elser, J.J. Sustainability Challenges of Phosphorus and Food: Solutions from Closing the Human Phosphorus Cycle. BioScience 2011, 61, 117–124. [Google Scholar] [CrossRef] [Green Version]
- WERF. Nutrient Recovery State of the Knowledge as of 2011; Water Research Foundation: Denver, CO, USA, 2011. [Google Scholar]
- Zhang, W.; Dou, Z.-X.; He, P.; Ju, X.-T.; Powlson, D.; Chadwick, D.; Sayer, J. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proc. Natl. Acad. Sci. USA 2013, 110, 8375–8380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mo, W.; Zhang, Q. Energy-nutrients-water nexus: Integrated resource recovery in municipal wastewater treatment plants. J. Environ. Manag. 2013, 127, 255–267. [Google Scholar] [CrossRef]
- Jönsson, H. Source separation of human urine separation efficiency and effects on water emissions, crop yield, energy usage and reliability. In Proceedings of the First International Conference on Ecological Sanitation, Nanning, China, 5–8 November 2001. [Google Scholar]
- Verstraete, W.; Van de Caveye, P.; Diamantis, V. Maximum use of resources present in domestic “used water”. Bioresour. Technol. 2009, 100, 5537–5545. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, I.; Milà-i-Canals, L.; Fernández-Alba, A.R. Life Cycle Assessment of Water Supply Plans in Mediterranean Spain. J. Ind. Ecol. 2010, 14, 902–918. [Google Scholar] [CrossRef]
- Parkinson, J.; Tayler, K. Decentralized wastewater management in peri-urban areas in low-income countries. Environ. Urb. 2003, 15, 75–90. [Google Scholar] [CrossRef]
- Engin, G.O.; Demir, I. Cost analysis of alternative methods for wastewater handling in small communities. J. Environ. Manag. 2006, 79, 357–363. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Response to Congress on Use of Decentralized Wastewater Treatment Systems; United States Environmental Protection Agency: Washington, DC, USA, 1997.
- Crites, R.; Tchobanoglous, G. Small and Decentralized Wastewater Management Systems; WCB/McGraw-Hill: New York, NY, USA, 1998. [Google Scholar]
- Nelson, K. Water Conservation, Reuse, and Recycling. In An Iranian-American Workshop; National Academies Press: Washington, DC, USA, 2005. [Google Scholar]
- Gutterer, B.; Sasse, L.; Panzerbieter, T.; Reckerzügel, T. Decentralised Wastewater Treatment System (DEWATS) and Sanitation in Developing Countries: A Practical Guide. Available online: http://www.cabdirect.org/abstracts/20103140120.html;jsessionid=9D0874D07B97A0501DC93F272AD3E4B2 (accessed on 20 February 2018).
- Vymazal, J.; Brix, H.; Cooper, P.F.; Haberl, R.; Perfler, R.; Laber, J. Removal Mechanisms and Types of Constructed Wetlands. Available online: http://mit.biology.au.dk/~biohbn/cv/pdf_files/Con_Wet_Was_Treat_Eur(1998)17-66.pdf (accessed on 20 February 2018).
- Mitsch, W.J.; Gosselink, J.G. Wetlands; Wiley: New York, NY, USA, 2007. [Google Scholar]
- Kadlec, R.H.; Knight, R.L. Treatment Wetlands; CRC Press/Lewis Publishers: Boca Raton, FL, USA, 1996. [Google Scholar]
- Albold, A.; Wendland, C.; Mihaylova, B.; Ergünsel, A.; Galt, H. Constructed Wetlands Sustainable Wastewater Treatment for Rural and Peri-Urban Communities in Bulgaria. Available online: https://www.gwp.org/globalassets/global/toolbox/case-studies/europe/bulgaria.-constructed-wetlands-for-rural-and-peri-urban-waste-water- treatment-431.pdf (accessed on 20 February 2018).
- Hemkend-Reis, B.; Henseler, M.; Güdel, K.; Lehnhard, Y. Faecal Sludge Management (FSM). Available online: https://www.sswm.info/sites/default/files/reference_attachments/EAWAG SANDEC 2008 Module 5 FSM Lecture.pdf (accessed on 20 February 2018).
- WHO; UNICEF. Global Water Supply and Sanitation Assessment 2000 Report. Available online: http://www.who.int/water_sanitation_health/monitoring/jmp2000.pdf (accessed on 20 February 2018).
- Dolma, K.; Rishi, M.S.; Lata, R. Evaluation of Groundwater Quality and its Suitability for Drinking Purposes—A Case of Leh Town, Ladakh (J&K), India. Int. J. Sci. Eng. Res. 2015, 6, 576–590. [Google Scholar]
- Dolma, K.; Rishi, M.S.; Lata, R. An Appraisal of Centralized Waste Water Treatment Plant with Respect to Leh Town. Int. J. Sci. Res. 2015, 4, 2011–2016. [Google Scholar]
- Kasturirangan, K. Natural Resource Management Ladakh Region. A Remote Sensing Based Study; Regional Remote Sensing Service Centre: Dehradun, India, 2003. [Google Scholar]
- Chevuturi, A.; Dimri, A.P.; Thayyen, R.J. Climate change over Leh (Ladakh), India. Theor. Appl. Climatol. 2018, 131, 531–545. [Google Scholar] [CrossRef]
- Sherratt, K. Social and Economic Characteristics of Ladakh, India. Available online: https://www.geolsoc.org.uk/~/media/shared/documents/Events/Past Meeting Resources/Himalaya 14 Cultural Background to Ladakh.pdf (accessed on 20 February 2018).
- Pelliciardi, V. Tourism Traffic Volumes in Leh District: An Overview. Ladakh Stud. 2010, 11/10, 14–23. [Google Scholar]
- Leh Tourism Department. Statistics of Number of National and International Tourists in Leh Town; Ladakh Autonomous Hill Development Council: Leh, Jammu & Kashmir, India, 2017. [Google Scholar]
- Gondhalekar, D.; Nussbaum, S.; Akhtar, A.; Kebschull, J. Planning Under Uncertainty: Climate Change, Water Scarcity and Health Issues in Leh Town, Ladakh, India; Springer: Cambridge, UK, 2015; pp. 293–312. [Google Scholar]
- Santra, P. Scope of Solar Energy in Cold Arid Region of India at Leh Ladakh. Ann. Arid Zone 2015, 54, 109–117. [Google Scholar]
- Daultrey, S.; Gergan, R. Living with Change: Adaptation and Innovation in Ladakh. Climate Adaptation Series. Available online: http://www.intrepidexplorers.co.uk/download/i/mark_dl/u/4011885869/4607751139/Dau ltrey and Gergan 2011-Living with change.pdf (accessed on 20 February 2018).
- Harinarayana, T.; Abdul Azeez, K.K.; Murthy, D.N.; Veeraswamy, K.; Eknath Rao, S.P.; Manoj, C.; Naganjaneyulu, K. Exploration of geothermal structure in Puga geothermal field, Ladakh Himalayas, India by magnetotelluric studies. J. Appl. Geophys. 2006, 58, 280–295. [Google Scholar] [CrossRef]
- Farooq, M.; Shah, I.K.; Mushtaq, S.M.; Khaki, B.A.; Marazi, A.A.; Shah, N.; Mushtaq, M. Emission Inventory of CO2 in Jammu and Kashmir—A Sectoral Analysis; Government of Jammu & Kashmir: Srinagar, Jammu & Kashmir, India, 2016.
- SuSanA. Towards More Sustainable Sanitation Solutions. Available online: http://www.susana.org/_resources/documents/default/3-267-7-1452594644.pdf (accessed on 20 February 2018).
- WHO; UNICEF. Progress on Drinking Water, Sanitation And Hygiene: 2017 Update and SDG Baselines. Available online: http://www.wipo.int/amc/en/mediation/rules (accessed on 20 February 2018).
- WHO; UNICEF. Countries WASH Data. Available online: https://washdata.org/data (accessed on 20 February 2018).
- India Census. India Census 2011. Available online: http://www.censusindia.gov.in/2011-prov-results/indiaatglance.html (accessed on 20 February 2018).
- Government of Jammu & Kashmir. Faecal Sludge Septage Management. Available online: http://jkhudd.gov.in/pdfs/FSM Policy_J&K.pdf (accessed on 20 February 2018).
- CRWQCB. A Review of the Nitrate Problems in the Ground Waters of the Santa Ana Region and Their Relationship to High Density Developments on Septic Tank-Subsurface Disposal Systems. Available online: http://www.waterboards.ca.gov/santaana/water_issues/programs/septic_tanks/docs/nit%0Arate_study.pdf (accessed on 20 February 2018).
- BORDA. Fact Sheet: Faecal Sludge Treatment Plant (FSTP). Available online: https://smartnet.niua.org/content/ded33e3d-535f-4946-af0a-556244a79537 (accessed on 20 February 2018).
- Tetra Tech. Detailed Project Report for Sewerage System of Leh Town; Tetra Tech: New Delhi, India, 2009. [Google Scholar]
- Gao, T.; Liu, Q.; Wang, J. A comparative study of carbon footprint and assessment standards. Int. J. Low Carb. Technol. 2014, 9, 237–243. [Google Scholar] [CrossRef]
- Wiedmann, T.; Minx, J. A Definition of “Carbon Footprint.” Ecological Economics Research Trends. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.467.6821&rep=rep1&type=pdf (accessed on 20 February 2018).
- IPCC. Climate Change 2013: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Bonanno, G. Water Resources Sustainability Assessment in Leh Town, Ladakh, India, and Alternative Solutions Using the Water-Energy-Food Nexus. Master’s Thesis, Technical University of Munich, Munich, Germany, 2018. [Google Scholar]
- Bunday, B.D. Methods for population estimation by random sampling. Powder Technol. 1975, 12, 283–286. [Google Scholar] [CrossRef]
- Akhtar, A.; Gondhalekar, D. Impacts of tourism on water resources in Leh town. Ladakh Stud. 2013, 30, 25–37. [Google Scholar]
- WBCSD; WRI. The Greenhouse Gas Protocol. A Corporate Accounting and Reporting Standard; World Business Council for Sustainable Development: Geneva, Switzerland; World Resources Institute: Washington, DC, USA, 2001. [Google Scholar]
- Mander, U.; Kuusemets, V.; Lõhmus, K.; Mauring, T.; Teiter, S.; Augustin, J. Nitrous oxide, dinitrogen and methane emission in a subsurface flow constructed wetland. Water Sci. Technol. 2003, 48, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Mander, U.; Dotro, G.; Ebie, Y.; Towprayoon, S.; Chiemchaisri, C.; Nogueira, S.F.; Mitsch, W.J. Greenhouse gas emission in constructed wetlands for wastewater treatment: A review. Ecol. Eng. 2014, 66, 19–35. [Google Scholar] [CrossRef]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 1218–1230. [Google Scholar] [CrossRef]
- GIZ; IWA. Energy Performance and Carbon Emissions Assessment and Monitoring (ECAM) Tool. Available online: http://wacclim.org/ecam/index.php (accessed on 20 February 2018).
- Dos Santos, I.F.S.; Barros, R.M.; Tiago Filho, G.L. Electricity generation from biogas of anaerobic wastewater treatment plants in Brazil: An assessment of feasibility and potential. J. Clean. Prod. 2016, 126, 504–514. [Google Scholar] [CrossRef]
- Ravindranath, N.H.; Ramakrishna, J. Energy options for cooking in India. Energy Policy 1997, 25, 63–75. [Google Scholar] [CrossRef]
- Vu, T.K.V.; Vu, D.Q.; Jensen, L.S.; Sommer, S.G.; Bruun, S. Life Cycle Assessment of Biogas Production in Small-scale Household Digesters in Vietnam. Asian Australas. J. Anim. Sci. 2015, 28, 716–729. [Google Scholar] [CrossRef] [Green Version]
- DEFRA. Future Water: The government’s Water Strategy for England; District Statistics & Evaluation Office: Norwich, UK, 2008. [Google Scholar]
- Hutson, S.S.; Barber, N.L.; Kenny, J.F.; Linsey, K.S.; Lumia, D.S.; Maupin, M.A. Estimated Use of Water in the United States in 2000. Available online: https://pubs.usgs.gov/circ/1344/pdf/c1344.pdf (accessed on 20 February 2018).
- Friedrich, E.; Pillay, S.; Buckley, C. Environmental life cycle assessments for water treatment processes—A South African case study of an urban water cycle. Water Sa 2009, 35, 2731–2760. [Google Scholar] [CrossRef]
- Venkatesh, G.; Brattebø, H. Energy consumption, costs and environmental impacts for urban water cycle services: Case study of Oslo (Norway). Energy 2011, 36, 792–800. [Google Scholar] [CrossRef]
- Ball, A.; Ahmad, S.; Mccluskey, C.; Pham, P.; Ahn, I.; Dawson, L.; Nowakowski, D. Australian Energy Update 2016. Available online: https://www.industry.gov.au/Office-of-the-Chief-Economist/Publications/Documents/aes/2016-australian-energy-statistics.pdf (accessed on 20 February 2018).
- Miller, L.A.; Ramaswami, A.; Asce, M.; Ranjan, R. Contribution of Water and Wastewater Infrastructures to Urban Energy Metabolism and Greenhouse Gas Emissions in Cities in India. J. Environ. Eng. 2013, 139, 738–745. [Google Scholar] [CrossRef]
- Gikas, P. Towards energy positive wastewater treatment plants. J. Environ. Manag. 2017, 203, 621–629. [Google Scholar] [CrossRef] [PubMed]
- De Haas, D.; Hartley, K. Greenhouse gas emissions from BNR plant-do we have the right focus? In Proceedings of the Sewage Management-Risk Assessment and Triple Bottom Line, Queensland, Australia, 7 June 2004. [Google Scholar]
- Pescod, M.B. Wastewater Treatment and Use in Agriculture. Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/docrep/t0551e/t0551e00.htm#Contents (accessed on 20 February 2018).
- US EPA. Process Design Manual: Land application of Sewage Sludge and Domestic Septage; US Environmental Protection Agency, Office of Research and Development: Washington, DC, USA, 1995. [Google Scholar]
- Sophie, B. The State of the Promotion of Biogas from Wastewater Plants in France and Europe. Available online: http://www2.agroparistech.fr/IMG/pdf/syn08-eng-Bonnier.pdf (accessed on 20 February 2018).
- Suzuki, A.B.P.; Fernandes, D.M.; Pereira Faria, R.A.; Vidal, T.C.M. Use of biogas in internal combustion engines. Brazil. J. Appl. Technol. Agric. Sci. 2011, 41, 221–237. [Google Scholar] [CrossRef]
- Mohr, M.; Iden, J.; Beckett, M. Guideline: Vacuum Sewer Systems. Available online: http://www.unescap.org/sites/default/files/Guideline_VacuumSewerSystems_Fraunhofer IGB_2016_0.pdf (accessed on 20 February 2018).
- Cooper, P.F. The performance of vertical flow constructed wetland systems with special reference to the significance of oxygen transfer and hydraulic loading rates. Water Sci. Technol. 2005, 51, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Leverenz, H.L.; Tchobanoglous, P.E.G.; Jeannie, P.E.; Darby, L. Evaluation of greenhouse gas emissions from septic tanks. Available online: www.werf.org (accessed on 20 February 2018).
- Hoffmann, H.; Platzer, C.; Winker, M.; Münch, E.V. Technology Review of Constructed Wetlands; von Muench, E., Ed.; GIZ GmbH: Eschborn, Germany, 2011. [Google Scholar]
- Genzowsky, K.; Rohn, A.; Bolle, F.-W.; Merkel, W. Methodenentwicklung zur Bewertung von Siedlungswasserwirtschaftlichen und Wasserwirtschaftlichen Anlagen Hinsichtlich ihres Ökologischen Fußabdrucks; IWW Zentrum Wasser: Aachen, Germany, 2011. [Google Scholar]
- Tharani, K.; Dahiya, R. Comparative analysis of DG and solar PV water pumping systems. AIP Conf. Proc. 2016, 20019. [Google Scholar] [CrossRef]
- Odeh, I. Introducing new design and performance points for photovoltaic water pumping systems based on long-term field data analysis. J. Renew. Sustain. Energy 2013, 5, 23135. [Google Scholar] [CrossRef]
- Posorski, R. Photovoltaic water pumps, an attractive tool for rural drinking water supply. Sol. Energy 1996, 58, 155–163. [Google Scholar] [CrossRef]
- CPHEEO. Manual on Water Supply and Treatment; Ministry of Drinking Water and Sanitation, Government of India: New Delhi, India, 1999.
- Lohan, S.K.; Dixit, J.; Kumar, R.; Pandey, Y.; Khan, J.; Ishaq, M.; Kumar, D. Biogas: A boon for sustainable energy development in India’s cold climate. Renew. Sustain. Energy Rev. 2015, 43, 95–101. [Google Scholar] [CrossRef]
- Balasubramaniyam, U.; Zisengwe, L.S.; Meriggi, N.; Buysman, E. Biogas Production in Climates with Long Cold Winters. Available online: http://www.build-a-biogas-plant.com/PDF/BALASUBRAMANIYAM-2008-Biogas-Production-in-Climates-with-long-cold-Winters.pdf (accessed on 20 February 2018).
- Bansal, N.K. A Technoeconomic Assessment of Solar-Assisted Biogas Systems. Energy Sour. 1988, 10, 213–229. [Google Scholar] [CrossRef]
- Stranddorf, H.K.; Hoffmann, L.; Schmidt, A.; FORCE Technology Denmark. Impact Categories, Normalisation and Weighting in LCA. Available online: https://www2.mst.dk/udgiv/publications/2005/87-7614-574-3/pdf/87-7614-575-1.pdf (accessed on 20 February 2018).
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lahmouri, M.; Drewes, J.E.; Gondhalekar, D. Analysis of Greenhouse Gas Emissions in Centralized and Decentralized Water Reclamation with Resource Recovery Strategies in Leh Town, Ladakh, India, and Potential for Their Reduction in Context of the Water–Energy–Food Nexus. Water 2019, 11, 906. https://doi.org/10.3390/w11050906
Lahmouri M, Drewes JE, Gondhalekar D. Analysis of Greenhouse Gas Emissions in Centralized and Decentralized Water Reclamation with Resource Recovery Strategies in Leh Town, Ladakh, India, and Potential for Their Reduction in Context of the Water–Energy–Food Nexus. Water. 2019; 11(5):906. https://doi.org/10.3390/w11050906
Chicago/Turabian StyleLahmouri, Mounia, Jörg E. Drewes, and Daphne Gondhalekar. 2019. "Analysis of Greenhouse Gas Emissions in Centralized and Decentralized Water Reclamation with Resource Recovery Strategies in Leh Town, Ladakh, India, and Potential for Their Reduction in Context of the Water–Energy–Food Nexus" Water 11, no. 5: 906. https://doi.org/10.3390/w11050906
APA StyleLahmouri, M., Drewes, J. E., & Gondhalekar, D. (2019). Analysis of Greenhouse Gas Emissions in Centralized and Decentralized Water Reclamation with Resource Recovery Strategies in Leh Town, Ladakh, India, and Potential for Their Reduction in Context of the Water–Energy–Food Nexus. Water, 11(5), 906. https://doi.org/10.3390/w11050906