Tropical Andes Radar Precipitation Estimates Need High Temporal and Moderate Spatial Resolution
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Weather Radar Data
2.3. Rain Gauge Data and Rain Events
2.4. Re-Analysis Data
3. Methodology
3.1. Rain Field Advection
3.2. Derivation of 1-Min-Interval Images
3.3. Impact of Spatial and Temporal Resolutions of the Radar Data on Cumulative QPE
3.4. Rainfall Features
4. Results
4.1. Validation of Optical Flow Method
4.2. Impact of Spatial and Temporal Resolution of the Radar Data on QPE
4.3. Influence of Rain Event Features
4.3.1. Rain Field Motion
4.3.2. Rain Total Volume and Spatial Coverage Percentage
4.3.3. Maximum Rainfall Intensities
5. Conclusions
- (a)
- The PyrLK model can be used in the atmospheric conditions in the Tropical Andes. The average correlation coefficient and probability of detection index between the images recorded by the radar and estimated by the model for the 11 analyzed events were 0.75 and 0.85, respectively. However, it was observed that the PyrLK is better adjusted for events with slow rain motions (r = 0.79, POD = 0.86) than for fast motions (r = 0.62, POD = 0.82). Thus, the slower the horizontal rain motion, the higher the model performance.
- (b)
- The radar–rain gauge relation was enhanced when using 1-min-interval radar data instead of 5-min-interval data (r from 0.67 to 0.69) for the three pixel resolutions. The BIAS between the radar and rain gauge decreased by 40% and the POD significantly improved (11%) when using 1-min-interval interpolated images.
- (c)
- There was a slight improvement (<5%) in the radar–rain gauge relation when the pixel resolution is increased from 0.50 to 0.10 km. Therefore, for radar–rain gauge analysis in the study area, images of 0.50 km of spatial resolution are a good trade-off, which will reduce the computational cost of data processing.
- (d)
- The hourly radar–rain gauge relation decreased considerably with the increase of the data sampling time (r from 0.69 to 0.31 for recording times of 1 to 60 min). These tendencies may be explained by the fact that by decreasing the temporal resolution, the radar does not capture the rapidly evolving echoes or rain cells. In addition, the rain gauge network does not capture the high spatial variability of the Tropical Andes precipitation.
- (e)
- In temporal resolution terms, using 1-min-interval radar data enhanced the rain total volume estimation by 7% compared with 5-min-interval radar data and 12% compared with 10-min-interval radar data. This improvement occurred, because the 1-min-interval radar images were able to capture more details of the rain event characteristics.
- (f)
- The difference between the spatial rainfall coverage captured by the radar and the rain gauge network significantly influenced the calculated rain volume. This difference occurred mainly because (i) the rain gauge network is neither dense nor homogeneous, and it does not capture all of the rain cells and may (strongly) underestimate or overestimate the rainfall between stations through interpolation processes; and (ii) some precipitations may be generated below the height of the beam radar. Efforts are currently being carried out to fill this knowledge gap by using a combination of the CAXX horizontal radar and a vertically-pointed MRR to determine the vertical profile of rain and identify the height at which the precipitation events are generated.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fries, A.; Rollenbeck, R.; Bayer, F.; Gonzalez, V.; Oñate-Valivieso, F.; Peters, T.; Bendix, J. Catchment precipitation processes in the San Francisco valley in southern Ecuador: Combined approach using high-resolution radar images and in situ observations. Meteorol. Atmos. Phys. 2014, 13–29. [Google Scholar] [CrossRef]
- Lepioufle, J.M.; Leblois, E.; Creutin, J.D. Variography of rainfall accumulation in presence of advection. J. Hydrol. 2012, 464–465, 494–504. [Google Scholar] [CrossRef]
- Célleri, R.; Feyen, J. The Hydrology of Tropical Andean Ecosystems: Importance, Knowledge Status, and Perspectives. Mt. Res. Dev. 2009, 29, 350–355. [Google Scholar] [CrossRef] [Green Version]
- Célleri, R.; Willems, P.; Buytaert, W.; Feyen, J. Space-time rainfall variability in the Paute Basin, Ecuadorian Andes. Hydrol. Process. 2007, 21, 3316–3327. [Google Scholar] [CrossRef]
- Morin, E.; Goodrich, D.C.; Maddox, R.A.; Gao, X.; Gupta, H.V.; Sorooshian, S. Rainfall modeling for integrating radar information into hydrological model. Atmos. Sci. Lett. 2005, 6, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.-S.; Phuong, A.T.; Bae, D.-H. Quantitative Comparison of the Spatial Distribution of Radar and Gauge Rainfall Data. J. Hydrometeorol. 2012, 13, 1939–1953. [Google Scholar] [CrossRef]
- Kusiak, A.; Wei, X.; Verma, A.P.; Roz, E. Modeling and prediction of rainfall using radar reflectivity data: A data-mining approach. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2337–2342. [Google Scholar] [CrossRef]
- Li, L.; He, Z.; Chen, S.; Mai, X.; Zhang, A.; Hu, B.; Li, Z.; Tong, X. Subpixel-Based Precipitation Nowcasting with the Pyramid Lucas-Kanade Optical Flow Technique. Atmosphere 2018, 9, 260. [Google Scholar] [CrossRef]
- Montopoli, M.; Marzano, F.S.; Picciotti, E.; Vulpiani, G. Spatially-adaptive advection radar technique for precipitation mosaic nowcasting. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 874–884. [Google Scholar] [CrossRef]
- Páez, S. Quantitative Precipitation Forecast Using Weather Radar. Master’s Thesis, University Stuttgart, Stuttgart, Germany, 2012. [Google Scholar]
- Versace, P.; Sirangelo, B.; De Luca, D.L. A space-time generator for rainfall nowcasting: The PRAISEST model. Hydrol. Earth Syst. Sci. Discuss. 2008, 5, 749–783. [Google Scholar] [CrossRef]
- Berne, A.; Krajewski, W.F. Radar for hydrology: Unfulfilled promise or unrecognized potential? Adv. Water Resour. 2013, 51, 51–357. [Google Scholar] [CrossRef]
- Méndez-Antonio, B.; Caetano, E.; Soto-Cortés, G.; Rivera-Trejo, F.G.; Carvajal Rodríguez, R.A.; Watts, C. Weather Radar Data and Distributed Hydrological Modelling: An Application for Mexico Valley. Open J. Mod. Hydrol. 2013, 3, 79–88. [Google Scholar] [CrossRef]
- Rozalis, S.; Morin, E.; Yair, Y.; Price, C. Flash flood prediction using an uncalibrated hydrological model and radar rainfall data in a Mediterranean watershed under changing hydrological conditions. J. Hydrol. 2010, 394, 245–255. [Google Scholar] [CrossRef]
- Rollenbeck, R.; Bendix, J.; Fabian, P.; Boy, J.; Wilcke, W.; Dalitz, H.; Oesker, M.; Emck, P. Comparison of Different Techniques for the Measurement of Precipitation in Tropical Montane Rain Forest Regions. J. Atmos. Ocean. Technol. 2007, 24, 156–168. [Google Scholar] [CrossRef]
- Kanda, M. Progress in Urban Meteorology: A Review. J. Meteorol. Soc. Jpn. 2007, 85B, 363–383. [Google Scholar] [CrossRef]
- Bendix, J.; Fries, A.; Zárate, J.; Trachte, K.; Rollenbeck, R.; Pucha-Cofrep, F.; Paladines, R.; Palacios, I.; Orellana, J.; Oñate-Valdivieso, F.; et al. RadarNet-Sur first weather radar network in Tropical high mountains. Bull. Am. Meteorol. Soc. 2017, 98, 1235–1254. [Google Scholar] [CrossRef]
- Harrison, D.L.; Driscoll, S.J.; Kitchen, M. Improving precipitation estimates from weather radar using quality control and correction techniques. Meteorol. Appl. 2000, 7, 135–144. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.W.; Brandes, E.A. Radar Measurement of Rainfall—A Summary. Bull. Am. Meteorol. Soc. 1979, 60, 1048–1058. [Google Scholar] [CrossRef] [Green Version]
- Delrieu, G.; Serrar, S.; Guardo, E.; Creutin, J.D. Rain Measurement in Hilly Terrain with X-Band Weather Radar Systems: Accuracy of Path-Integrated Attenuation Estimates Derived from Mountain Returns. J. Atmos. Ocean. Technol. 1999, 16, 405–416. [Google Scholar] [CrossRef]
- Germann, U.; Galli, G.; Boscacci, M.; Bolliger, M. Radar precipitation measurement in a mountainous region. Q. J. R. Meteorol. Soc. 2006, 132, 1669–1692. [Google Scholar] [CrossRef] [Green Version]
- Rollenbeck, R.; Bendix, J. Experimental calibration of a cost-effective X-band weather radar for climate ecological studies in southern Ecuador. Atmos. Res. 2006, 79, 296–316. [Google Scholar] [CrossRef]
- Kim, T.J.; Kwon, H.H.; Lima, C. A Bayesian partial pooling approach to mean field bias correction of weather radar rainfall estimates: Application to Osungsan weather radar in South Korea. J. Hydrol. 2018, 565, 14–26. [Google Scholar] [CrossRef]
- Jordan, P.; Seed, A.; Austin, G. Sampling errors in radar estimates of rainfall. J. Geophys. Res. 2000, 105, 2247–2257. [Google Scholar] [CrossRef] [Green Version]
- Piccolo, F.; Chirico, G.B. Sampling errors in rainfall measurements by weather radar. Adv. Geosci. 2005, 2, 151–155. [Google Scholar] [CrossRef] [Green Version]
- Todini, E. A Bayesian technique for conditioning radar precipitation estimates to rain-gauge measurements. Hydrol. Earth Syst. Sci. 2010, 5, 187–199. [Google Scholar] [CrossRef]
- Seck, I.; Van Baelen, J. Geostatistical Merging of a Single-Polarized X-Band Weather Radar and a Sparse Rain Gauge Network over an Urban Catchment. Atmosphere 2018, 9, 496. [Google Scholar] [CrossRef]
- Seo, B.C.; Krajewski, W.F. Correcting temporal sampling error in radar-rainfall: Effect of advection parameters and rain storm characteristics on the correction accuracy. J. Hydrol. 2015, 531, 272–283. [Google Scholar] [CrossRef]
- Steiner, M.; Bell, T.L.; Zhang, Y.; Wood, E.F. Comparison of two methods for estimating the sampling-related uncertainty of satellite rainfall averages based on a large radar dataset. J. Clim. 2003, 16, 3759–3778. [Google Scholar] [CrossRef]
- Shucksmith, P.E.; Sutherland-Stacey, L.; Austin, G.L. The spatial and temporal sampling errors inherent in low resolution radar estimates of rainfall. Meteorol. Appl. 2011, 18, 354–360. [Google Scholar] [CrossRef]
- Fabry, F.; Bellon, A.; Duncan, M.R.; Austin, G.L. High resolution rainfall measurements by radar for very small basins: The sampling problem reexamined. J. Hydrol. 1994, 161, 415–428. [Google Scholar] [CrossRef]
- Villarini, G.; Mandapaka, P.V.; Krajewski, W.F.; Moore, R.J. Rainfall and sampling uncertainties: A rain gauge perspective. J. Geophys. Res. Atmos. 2008, 113, 1–12. [Google Scholar] [CrossRef]
- Rodriguez-Iturbe, I. Ecohydrology: A hydrologic perspective of climate-soil-vegetation dynamies. Water Resour. Res. 2000, 36, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Krajewski, W.F. A comparison of methods for calculation of Radar-Rainfall Hourly Accumulations. J. Am. Water Resour. Assoc. 1996, 32. [Google Scholar] [CrossRef]
- Villarini, G.; Krajewski, W.F. Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall. Surv. Geophys. 2010, 31, 107–129. [Google Scholar] [CrossRef]
- Rossa, A.M.; Laudanna Del Guerra, F.; Borga, M.; Zanon, F.; Settin, T.; Leuenberger, D. Radar-driven high-resolution hydro-meteorological forecasts of the 26 September 2007 Venice flash flood. J. Hydrol. 2010, 394, 230–244. [Google Scholar] [CrossRef]
- Campozano, L.; Célleri, R.; Trachte, K.; Bendix, J.; Samaniego, E. Rainfall and Cloud Dynamics in the Andes: A Southern Ecuador Case Study. Adv. Meteorol. 2016, 2016. [Google Scholar] [CrossRef]
- Farley, K.A.; Anderson, W.G.; Bremer, L.L.; Harden, C.P. Compensation for ecosystem services: An evaluation of efforts to achieve conservation and development in Ecuadorian páramo grasslands. Environ. Conserv. 2011, 38, 393–405. [Google Scholar] [CrossRef]
- Mosquera, G.M.; Lazo, P.X.; Célleri, R.; Wilcox, B.P.; Crespo, P. Runoff from Tropical alpine grasslands increases with areal extent of wetlands. Catena 2015, 125, 120–128. [Google Scholar] [CrossRef]
- Pesántez, J.D.; Martinez, A. Propuesta de Modelo de Gestión de la Subcuenca del río Tomebamba, Como Herramienta de Manejo Integrado y Conservación. Master’s Thesis, Universidad del Azuay, Cuenca, Ecuador, 2015; pp. 1–183. [Google Scholar]
- Vuille, M.; Bradley, R.S.; Keimig, F. Climate Variability in the Andes of Ecuador and Its Relation to Tropical Pacific and Atlantic Sea Surface Temperature Anomalies. J. Clim. 2000, 13, 2520–2535. [Google Scholar] [CrossRef] [Green Version]
- Bendix, J. Heavy rainfall episodes in Ecuador during El Niño events and associated regional atmospheric circulation and SST patterns. Adv. Geosci. 2006, 6, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Tapia, J.D.; Célleri, R. Estructura de la Precipitación y su Variabilidad Espacio-Temporal a lo Largo de una Gradiente Altitudinal. Bachelor’s Thesis, Universidad de Cuenca, Cuenca, Ecuador, 2016; pp. 1–71. [Google Scholar]
- Padrón, R.S.; Wilcox, B.P.; Crespo, P.; Célleri, R. Rainfall in the Andean Páramo: New Insights from High-Resolution Monitoring in Southern Ecuador. J. Hydrometeorol. 2015, 16, 985–996. [Google Scholar] [CrossRef]
- Carrillo-Rojas, G.; Silva, B.; Córdova, M.; Célleri, R.; Bendix, J. Dynamic Mapping of Evapotranspiration Using an Energy Balance-Based Model over an Andean Páramo Catchment of Southern Ecuador. Remote Sens. 2016, 8, 160. [Google Scholar] [CrossRef]
- Orellana-Alvear, J.; Célleri, R.; Rollenbeck, R.; Bendix, J. Analysis of rain types and their Z-R relationships at different locations in the high andes of southern Ecuador. J. Appl. Meteorol. Climatol. 2017, 56, 3065–3080. [Google Scholar] [CrossRef]
- Heistermann, M.; Jacobi, S.; Pfaff, T. Technical Note: An open source library for processing weather radar data (wradlib). Hydrol. Earth Syst. Sci. 2013, 17, 863–871. [Google Scholar] [CrossRef]
- Pfaff, T.; Heistermann, M.; Jacobi, S. wradlib—An Open Source Library for Weather Radar Data Processing. In Proceedings of the The Seventh European Conference on Radar in Meteorology and Hydrology, Toulouse, France, 24–29 June 2012. [Google Scholar]
- NOAA. Re-analysis data of wind speed and direction. In National Centers for Environmental Prediction NCEP-FNL; NOAA: Silver Spring, MA, USA, 2000. [Google Scholar]
- Rinehart, R.E.; Garvey, E.T. Three-dimensional storm motion detection by conventional weather radar. Nature 1978, 273, 287–289. [Google Scholar] [CrossRef]
- Horn, B.; Schunck, B. Determining optical flow. Artif. Intell. 1981, 17, 185–203. [Google Scholar] [CrossRef] [Green Version]
- Pfaff, T. Processing and Analysis of Weather Radar Data for Use in Hydrology. Ph.D. Thesis, University of Stuttgart, Stuttgart, Germany, 2013. [Google Scholar]
- Woo, W.; Wong, W. Operational Application of Optical Flow Techniques to Radar-Based Rainfall Nowcasting. Atmosphere 2017, 8, 48. [Google Scholar] [CrossRef]
- Bouguet, J.-Y. Pyramidal Implementation of the Affine Lucas Kanade Feature Tracker Description of the algorithm. Intel Corp. Microprocess. Res. Labs 2001, 5, 4. [Google Scholar]
- Lucas, B.D.; Kanade, T. An Iterative Image Registration Technique with an Application to Stereo Vision. Imaging 1981, 130, 674–679. [Google Scholar]
- Bradski, G.; Kaehler, A. Learning OpenCV; Loukides, M., Ed.; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2008; ISBN 9780596516130. [Google Scholar]
- Ballari, D.; Castro, E.; Campozano, L. Validation of Satellite Precipitation (Trmm 3B43) in Ecuadorian Coastal Plains, Andean Highlands and Amazonian Rainforest. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B8, 305–311. [Google Scholar] [CrossRef]
- Jatho, N.; Pluntke, T.; Kurbjuhn, C.; Bernhofer, C. An approach to combine radar and gauge based rainfall data under consideration of their qualities in low mountain ranges of Saxony. Nat. Hazards Earth Syst. Sci. 2010, 10, 429–446. [Google Scholar] [CrossRef] [Green Version]
- Nugent, A.D.; Smith, R.B.; Minder, J.R. Wind Speed Control of Tropical Orographic Convection. J. Atmos. Sci. 2014, 71, 2695–2712. [Google Scholar] [CrossRef]
- Nerini, D.; Zulkafli, Z.; Wang, L.-P.; Onof, C.; Buytaert, W.; Lavado, W.; Guyot, J.-L. A comparative analysis of TRMM-rain gauge data merging techniques at the daily time scale for distributed rainfall-runoff modelling applications. J. Hydrometeorol. 2015. [Google Scholar] [CrossRef]
- Sandford, C. Correcting for wind drift in high resolution radar rainfall products: A feasibility study. J. Hydrol. 2015, 531, 284–295. [Google Scholar] [CrossRef]
- Collier, C.G. The Impact of Wind Drift on the Utility of Very High Spatial Resolution Radar Data Over Urban Areas. Phys. Chem. Earth. 1999, 24, 889–893. [Google Scholar] [CrossRef]
- Harrold, T.W.; English, E.J.; Nicholass, C.A. The accuracy of radar-derived rainfall measurements in hilly terrain. Q. J. R. Meteorol. Soc. 1974, 100, 331–350. [Google Scholar] [CrossRef]
- Lauri, T.; Koistinen, J.; Moisseev, D. Advection-Based Adjustment of Radar Measurements. Mon. Weather Rev. 2012, 140, 1014–1022. [Google Scholar] [CrossRef]
- Ochoa-Tocachi, B.F.; Buytaert, W.; De Bièvre, B.; Célleri, R.; Crespo, P.; Villacís, M.; Llerena, C.A.; Acosta, L.; Villazón, M.; Guallpa, M.; et al. Impacts of land use on the hydrological response of Tropical Andean catchments. Hydrol. Process. 2016, 30. [Google Scholar] [CrossRef]
- Zulkafli, Z.; Buytaert, W.; Onof, C.; Manz, B.; Tarnavsky, E.; Lavado, W.; Guyot, J.-L. A Comparative Performance Analysis of TRMM 3B42 (TMPA) Versions 6 and 7 for Hydrological Applications over Andean-Amazon River Basins. J. Hydrometeorol. 2014, 15, 581–592. [Google Scholar] [CrossRef]
Area | Perimeter | Vegetal Cover | Shape | Altitude Min | Altitude Max |
km2 | km | % | - | m a.s.l. | m a.s.l. |
1604.5 | 271 | PR (71.3); AMF (10.6) P (7.79); UR (5.7) BQ (2.5) | CO | 2540 | 4680 |
Rain | Runoff | ETo | Q. min. daily | Q. máx. daily | R.C. |
mm year−1 | mm year−1 | mm year−1 | mm | mm | - |
1221 | 618 | 580 | 0.25 | 1.07 | 0.51 |
ID Event | Initial Date | Final Date | Duration | Min. Volume Rain Gauge | Max. Volume Rain Gauge | Max. Intensity (5 min) | Max. Intensity (h) |
---|---|---|---|---|---|---|---|
mm/dd/yy h:mm | mm/dd/yy h:mm | h | mm | mm | mm h−1 | mm h−1 | |
1 | 04/17/2015 00:00 | 04/17/2015 03:00 | 3:00 | 1.10 | 32.10 | 62.40 | 17.10 |
2 | 04/20/2015 16:00 | 04/20/2015 20:00 | 4:00 | 1.27 | 47.00 | 110.40 | 32.20 |
3 | 04/21/2015 14:00 | 04/21/2015 18:00 | 4:00 | 1.60 | 27.20 | 40.80 | 17.10 |
4 | 05/03/2015 15:00 | 05/04/2015 01:00 | 10:00 | 6.30 | 50.29 | 76.20 | 24.89 |
5 | 03/08/2016 14:00 | 03/08/2016 17:00 | 3:00 | 1.50 | 28.96 | 103.20 | 23.00 |
6 | 03/10/2016 00:00 | 03/10/2016 06:00 | 6:00 | 1.90 | 30.48 | 34.80 | 13.20 |
7 | 04/27/2016 17:00 | 04/27/2016 22:00 | 5:00 | 1.20 | 22.70 | 63.60 | 14.50 |
8 | 06/12/2016 12:00 | 06/12/2016 16:00 | 4:00 | 1.20 | 20.07 | 39.62 | 13.46 |
9 | 09/14/2016 16:00 | 09/14/2016 22:00 | 6:00 | 2.03 | 38.30 | 74.40 | 29.10 |
10 | 10/24/2016 15:00 | 10/24/2016 18:00 | 3:00 | 1.60 | 25.30 | 57.59 | 20.20 |
11 | 11/10/2016 17:00 | 11/10/2016 00:00 | 7:00 | 2.90 | 34.30 | 73.20 | 25.30 |
ID Event | r * | Detection Index | ||
---|---|---|---|---|
POD | FAR | FBI | ||
1 | 0.83 | 0.90 | 0.19 | 1.11 |
2 | 0.70 | 0.82 | 0.35 | 1.38 |
3 | 0.70 | 0.84 | 0.29 | 1.19 |
4 | 0.74 | 0.88 | 0.27 | 1.24 |
5 | 0.68 | 0.78 | 0.42 | 1.45 |
6 | 0.78 | 0.86 | 0.26 | 1.20 |
7 | 0.75 | 0.87 | 0.40 | 1.61 |
8 | 0.62 | 0.82 | 0.31 | 1.22 |
9 | 0.79 | 0.91 | 0.18 | 1.14 |
10 | 0.79 | 0.86 | 0.20 | 1.10 |
11 | 0.75 | 0.89 | 0.25 | 1.25 |
Sample Time (min) | 0.50 km | |||||
---|---|---|---|---|---|---|
r * | BIAS (mm) | RMSE (mm) | POD | FAR | FBI | |
1 | 0.69 | −0.15 | 2.46 | 0.76 | 0.13 | 0.98 |
5 | 0.68 | −0.21 | 2.46 | 0.71 | 0.15 | 0.89 |
10 | 0.65 | −0.28 | 2.42 | 0.68 | 0.16 | 0.84 |
15 | 0.6 | −0.34 | 2.45 | 0.66 | 0.16 | 0.78 |
20 | 0.53 | −0.4 | 2.5 | 0.62 | 0.19 | 0.73 |
30 | 0.44 | −0.47 | 2.54 | 0.56 | 0.2 | 0.66 |
60 | 0.34 | −0.72 | 2.85 | 0.42 | 0.23 | 0.48 |
0.25 km | ||||||
1 | 0.67 | −0.11 | 2.49 | 0.79 | 0.12 | 1.03 |
5 | 0.67 | −0.23 | 2.46 | 0.71 | 0.15 | 0.87 |
10 | 0.65 | −0.29 | 2.42 | 0.68 | 0.15 | 0.83 |
15 | 0.56 | −0.36 | 2.45 | 0.65 | 0.16 | 0.78 |
20 | 0.5 | −0.39 | 2.49 | 0.62 | 0.18 | 0.72 |
30 | 0.4 | −0.47 | 2.53 | 0.56 | 0.19 | 0.65 |
60 | 0.3 | −0.75 | 2.89 | 0.41 | 0.24 | 0.47 |
0.10 km | ||||||
1 | 0.68 | −0.13 | 2.48 | 0.8 | 0.12 | 1.08 |
5 | 0.67 | −0.26 | 2.46 | 0.71 | 0.15 | 0.86 |
10 | 0.65 | −0.3 | 2.41 | 0.68 | 0.15 | 0.83 |
15 | 0.58 | −0.36 | 2.45 | 0.65 | 0.16 | 0.77 |
20 | 0.51 | −0.4 | 2.48 | 0.61 | 0.18 | 0.72 |
30 | 0.4 | −0.49 | 2.57 | 0.55 | 0.18 | 0.64 |
60 | 0.31 | −0.74 | 2.84 | 0.41 | 0.24 | 0.47 |
Rain Motion Range (m s−1) | Date | Rain Motion (m s−1) | |||
---|---|---|---|---|---|
Start | End | Vx | Vy | V | |
1–2.5 | 10/24/2016 15:00 | 10/24/2016 18:00 | 0.90 | −0.64 | 1.92 |
04/20/2015 16:00 | 04/20/2015 20:00 | −0.64 | −1.77 | 2.41 | |
04/17/2015 00:00 | 04/17/2015 03:00 | −1.88 | −0.59 | 2.43 | |
03/10/2016 00:00 | 03/10/2016 06:00 | −1.48 | −1.51 | 2.45 | |
05/03/2015 15:00 | 05/04/2015 01:00 | −2.01 | 0.36 | 2.46 | |
2.5–5 | 09/14/2016 16:00 | 09/14/2016 22:00 | −1.30 | −0.70 | 2.64 |
03/08/2016 14:00 | 03/08/2016 17:00 | 2.22 | 1.45 | 3.54 | |
11/10/2016 17:00 | 11/10/2016 00:00 | −2.99 | 1.71 | 3.71 | |
>5 | 04/27/2016 17:00 | 04/27/2016 22:00 | −4.97 | −0.12 | 5.18 |
04/21/2015 14:00 | 04/21/2015 18:00 | −5.11 | 0.66 | 5.42 | |
06/12/2016 12:00 | 06/12/2016 16:00 | −11.04 | 0.97 | 11.24 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guallpa, M.; Orellana-Alvear, J.; Bendix, J. Tropical Andes Radar Precipitation Estimates Need High Temporal and Moderate Spatial Resolution. Water 2019, 11, 1038. https://doi.org/10.3390/w11051038
Guallpa M, Orellana-Alvear J, Bendix J. Tropical Andes Radar Precipitation Estimates Need High Temporal and Moderate Spatial Resolution. Water. 2019; 11(5):1038. https://doi.org/10.3390/w11051038
Chicago/Turabian StyleGuallpa, Mario, Johanna Orellana-Alvear, and Jörg Bendix. 2019. "Tropical Andes Radar Precipitation Estimates Need High Temporal and Moderate Spatial Resolution" Water 11, no. 5: 1038. https://doi.org/10.3390/w11051038
APA StyleGuallpa, M., Orellana-Alvear, J., & Bendix, J. (2019). Tropical Andes Radar Precipitation Estimates Need High Temporal and Moderate Spatial Resolution. Water, 11(5), 1038. https://doi.org/10.3390/w11051038