Effect of Cascading Reservoirs on the Flow Variation and Thermal Regime in the Lower Reaches of the Jinsha River
Abstract
:1. Introduction
2. Materials and Method
2.1. Study Site
2.2. Data
2.3. Assessment Method
2.4. Numerical Simulation
3. Results
3.1. Long-Term Flow Variability and Hydrological Alteration
3.1.1. Annual Mean Discharge
3.1.2. Seasonal Discharge Distribution
3.2. Long-Term Temperature Alterations
3.2.1. Water Temperature Variation
3.2.2. Seasonal Temperature Variation and Alteration Indices
3.3. Stratification in the Reservoirs
3.3.1. Stratification Features in the Xiluodu and Xiangjiaba Reservoirs
3.3.2. Influence of the Upstream Reservoir on the Stratification Structure of the Downstream Reservoir
4. Discussion
4.1. Effect of Reservoir Construction on River Discharge Dynamics
4.2. Effect of Reservoir Stratification on River Water Temperature
4.3. Importance of Cumulative Impacts in Cascading Reservoirs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Altinbilek, D. The role of dams in development. Water Sci. Technol. 2002, 45, 169–180. [Google Scholar] [CrossRef]
- Suen, J.P.; Eheart, J.W. Reservoir management to balance ecosystem and human needs: Incorporating the paradigm of the ecological flow regime. Water Resour. Res. 2006, 42, 1–9. [Google Scholar] [CrossRef]
- Bunn, S.E.; Arthington, A.H. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manag. 2002, 30, 492–507. [Google Scholar] [CrossRef]
- Poff, N.L.; Olden, J.D.; Merritt, D.M.; Pepin, D.M. Homogenization of regional river dynamics by dams and global biodiversity implications. Proc. Natl. Acad. Sci. USA 2007, 104, 5732–5737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maavara, T.; Parsons, C.T.; Ridenour, C.; Stojanovic, S.; Dürr, H.H.; Powley, H.R.; Van Cappellen, P. Global phosphorus retention by river damming. Proc. Natl. Acad. Sci. USA 2015, 112, 15603–15608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maavara, T.; Lauerwald, R.; Regnier, P.; Van Cappellen, P. Global perturbation of organic carbon cycling by river damming. Nat. Commun. 2017, 8, 15347. [Google Scholar] [CrossRef] [Green Version]
- Barros, N.; Cole, J.J.; Tranvik, L.J.; Prairie, Y.T.; Bastviken, D.; Huszar, V.L.; Del Giorgio, P.; Roland, F. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat. Geosci. 2011, 4, 593–596. [Google Scholar] [CrossRef]
- Deemer, B.R.; Harrison, J.A.; Li, S.; Beaulieu, J.J.; DelSontro, T.; Barros, N.; Bezerra-Neto, J.F.; Powers, S.M.; Dos Santos, M.A.; Vonk, J.A. Greenhouse gas emissions from reservoir water surfaces: A new global synthesis. BioScience 2016, 66, 949–964. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Meybeck, M.; Fekete, B.; Sharma, K.; Green, P.; Syvitski, J.P. Anthropogenic sediment retention: Major global impact from registered river impoundments. Glob. Planet. Chang. 2003, 39, 169–190. [Google Scholar] [CrossRef]
- Thornton, K.W.; Kimmel, B.L.; Payne, F.E. Reservoir Limnology: Ecological Perspectives; John Wiley & Sons: Hoboken, NJ, USA, 1990. [Google Scholar]
- Agostinho, A.A.; Pelicice, F.M.; Gomes, L.C. Dams and the fish fauna of the Neotropical region: Impacts and management related to diversity and fisheries. Braz. J. Biol. 2008, 68, 1119–1132. [Google Scholar] [CrossRef] [PubMed]
- Casamitjana, X.; Serra, T.; Colomer, J.; Baserba, C.; Pérez-Losada, J. Effects of the water withdrawal in the stratification patterns of a reservoir. Hydrobiologia 2003, 504, 21–28. [Google Scholar] [CrossRef]
- Huang, T.; Li, X.; Rijnaarts, H.; Grotenhuis, T.; Ma, W.; Sun, X.; Xu, J. Effects of storm runoff on the thermal regime and water quality of a deep, stratified reservoir in a temperate monsoon zone, in Northwest China. Sci. Total Environ. 2014, 485, 820–827. [Google Scholar] [CrossRef]
- Moreno-Ostos, E.; Marcé, R.; Ordóñez, J.; Dolz, J.; Armengol, J. Hydraulic management drives heat budgets and temperature trends in a Mediterranean reservoir. Int. Rev. Hydrobiol. 2008, 93, 131–147. [Google Scholar] [CrossRef]
- Elçi, Ş. Effects of thermal stratification and mixing on reservoir water quality. Limnology 2008, 9, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Sharip, Z. Stratification and water quality variations in three large tropical reservoirs. Int. J. Ecol. Environ. Sci. 2017, 43, 175–184. [Google Scholar]
- Maingi, J.K.; Marsh, S.E. Quantifying hydrologic impacts following dam construction along the Tana River, Kenya. J. Arid Environ. 2002, 50, 53–79. [Google Scholar] [CrossRef]
- Jiang, L.; Ban, X.; Wang, X.; Cai, X. Assessment of hydrologic alterations caused by the Three Gorges Dam in the middle and lower reaches of Yangtze River, China. Water 2014, 6, 1419–1434. [Google Scholar] [CrossRef]
- Caissie, D. The thermal regime of rivers: A review. Freshw. Biol. 2006, 51, 1389–1406. [Google Scholar] [CrossRef]
- Olden, J.D.; Naiman, R.J. Incorporating thermal regimes into environmental flows assessments: Modifying dam operations to restore freshwater ecosystem integrity. Freshw. Biol. 2010, 55, 86–107. [Google Scholar] [CrossRef]
- Zarfl, C.; Lumsdon, A.E.; Berlekamp, J.; Tydecks, L.; Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 2015, 77, 161–170. [Google Scholar] [CrossRef]
- Ouyang, W.; Hao, F.; Song, K.; Zhang, X. Cascade dam-induced hydrological disturbance and environmental impact in the upper stream of the Yellow River. Water Resour. Manag. 2011, 25, 913–927. [Google Scholar] [CrossRef]
- Song, X.; Zhuang, Y.; Wang, X.; Li, E. Combined Effect of Danjiangkou Reservoir and Cascade Reservoirs on Hydrologic Regime Downstream. J. Hydrol. Eng. 2018, 23, 05018008. [Google Scholar] [CrossRef]
- Lauri, H.; Moel, H.D.; Ward, P.; Räsänen, T.; Keskinen, M.; Kummu, M. Future changes in Mekong River hydrology: Impact of climate change and reservoir operation on discharge. Hydrol. Earth Syst. Sci. 2012, 16, 4603–4619. [Google Scholar] [CrossRef]
- Hocking, G.; Straškraba, M. An analysis of the effect of an upstream reservoir by means of a mathematical model of reservoir hydrodynamics. Water Sci. Technol. 1994, 30, 91–98. [Google Scholar] [CrossRef]
- Chen, G.; Fang, X.; Devkota, J. Understanding flow dynamics and density currents in a river-reservoir system under upstream reservoir releases. Hydrol. Sci. J. 2016, 61, 2411–2426. [Google Scholar] [CrossRef]
- Yonghui, Y.; Baiping, Z.; Xiaoding, M.; Peng, M. Large-scale hydroelectric projects and mountain development on the upper Yangtze river. Mt. Res. Dev. 2006, 26, 109–115. [Google Scholar] [CrossRef]
- Yin, Z.J.; Chen, J.; Xu, J.J. Application of multiple environmental flow methods to optimize cascade dams operation in the Lower Jinsha River. In Advanced Materials Research; Trans Tech Publications Ltd.: Cham, Switzerland, 2014; pp. 3057–3064. [Google Scholar]
- Duan, W.; Guo, S.; Wang, J.; Liu, D. Impact of cascaded reservoirs group on flow regime in the middle and lower reaches of the Yangtze River. Water 2016, 8, 218. [Google Scholar] [CrossRef]
- Xie, Q.; Liu, Z.; Fang, X.; Chen, Y.; Li, C.; MacIntyre, S. Understanding the temperature variations and thermal structure of a subtropical deep river-run reservoir before and after impoundment. Water 2017, 9, 603. [Google Scholar] [CrossRef]
- Cheng, F.; Li, W.; Castello, L.; Murphy, B.R.; Xie, S. Potential effects of dam cascade on fish: Lessons from the Yangtze River. Rev. Fish Biol. Fish. 2015, 25, 569–585. [Google Scholar] [CrossRef]
- Ma, Q.; Li, R.; Feng, J.; Lu, J.; Zhou, Q. Cumulative effects of cascade hydropower stations on total dissolved gas supersaturation. Environ. Sci. Pollut. Res. 2018, 25, 13536–13547. [Google Scholar] [CrossRef]
- Dai, S.; Lu, X. Sediment load change in the Yangtze River (Changjiang): A review. Geomorphology 2014, 215, 60–73. [Google Scholar] [CrossRef]
- Huang, X.-R.; Gao, L.-Y.; Yang, P.-P.; Xi, Y.-Y. Cumulative impact of dam constructions on streamflow and sediment regime in lower reaches of the Jinsha River, China. J. Mt. Sci. 2018, 15, 2752–2765. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, P.; Liu, D.; Yang, Z.; Ji, D. Nutrient spatial pattern of the upstream, mainstream and tributaries of the Three Gorges Reservoir in China. Environ. Monit. Assess. 2014, 186, 6833–6847. [Google Scholar] [CrossRef]
- Song, C.; Zhou, X.; Tang, W. Evaluation indicators for assessing the influence of reservoirs on downstream water temperature. Adv. Water Sci. 2012, 23, 419–426. (In Chinese) [Google Scholar]
- Long, L.; Xu, H.; Ji, D.; Cui, Y.; Liu, D.; Song, L. Characteristic of the water temperature lag in Three Gorges Reservoir and its effect on the water temperature structure of tributaries. Environ. Earth Sci. 2016, 75, 1459. [Google Scholar] [CrossRef]
- Quinn, F.H. Hydraulic residence times for the Laurentian Great Lakes. J. Great Lakes Res. 1992, 18, 22–28. [Google Scholar] [CrossRef]
- Cole, T.M.; Wells, S.A. CE-QUAL-W2: A Two-Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, Version 3.5; Army Engineer Waterways Experiment Station Vicksburg Ms Environmental Lab: Vicksburg, MS, USA, 2006. [Google Scholar]
- Kim, D.-K.; Zhang, W.; Watson, S.; Arhonditsis, G.B. A commentary on the modelling of the causal linkages among nutrient loading, harmful algal blooms, and hypoxia patterns in Lake Erie. J. Great Lakes Res. 2014, 40, 117–129. [Google Scholar] [CrossRef]
- Kumar, S.; Godrej, A.; Grizzard, T. Extending Occoquan Reservoir Water Quality Model for Stakeholder Involvement. In Proceedings of the 11th International Conference on Hydroinformatics, New York, NY, USA, 16–21 August 2014. [Google Scholar]
- Gelda, R.K.; Owens, E.M.; Effler, S.W. Calibration, verification, and an application of a two-dimensional hydrothermal model [CE-QUAL-W2 (t)] for Cannonsville Reservoir. Lake Reserv. Manag. 1998, 14, 186–196. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, B. Application of a 2-dimensional water quality model (CE-QUAL-W2) to the turbidity interflow in a deep reservoir (Lake Soyang, Korea). Lake Reserv. Manag. 2006, 22, 213–222. [Google Scholar] [CrossRef]
- Rangel-Peraza, J.; Obregon, O.; Nelson, J.; Williams, G.; De Anda, J.; González-Farías, F.; Miller, J. Modelling approach for characterizing thermal stratification and assessing water quality for a large tropical reservoir. Lakes Reserv. Res. Manag. 2012, 17, 119–129. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, X.; Liu, Z.; Wang, D. Trend analysis of precipitation in the Jinsha River Basin in China. J. Hydrometeorol. 2013, 14, 290–303. [Google Scholar] [CrossRef]
- Li, D.; Lu, X.; Yang, X.; Chen, L.; Lin, L. Sediment load responses to climate variation and cascade reservoirs in the Yangtze River: A case study of the Jinsha River. Geomorphology 2018, 322, 41–52. [Google Scholar] [CrossRef]
- Olden, J.D.; Poff, N. Redundancy and the choice of hydrologic indices for characterizing streamflow regimes. River Res. Appl. 2003, 19, 101–121. [Google Scholar] [CrossRef]
- Webb, B.; Walling, D. Long-term variability in the thermal impact of river impoundment and regulation. Appl. Geogr. 1996, 16, 211–223. [Google Scholar] [CrossRef]
- Preece, R.M.; Jones, H.A. The effect of Keepit Dam on the temperature regime of the Namoi River, Australia. River Res. Appl. 2002, 18, 397–414. [Google Scholar] [CrossRef]
- Jackson, H.; Gibbins, C.; Soulsby, C. Role of discharge and temperature variation in determining invertebrate community structure in a regulated river. River Res. Appl. 2007, 23, 651–669. [Google Scholar] [CrossRef]
- Angilletta, M.J., Jr.; Ashley Steel, E.; Bartz, K.K.; Kingsolver, J.G.; Scheuerell, M.D.; Beckman, B.R.; Crozier, L.G. Big dams and salmon evolution: Changes in thermal regimes and their potential evolutionary consequences. Evol. Appl. 2008, 1, 286–299. [Google Scholar] [CrossRef] [PubMed]
- Lessard, J.L.; Hayes, D.B. Effects of elevated water temperature on fish and macroinvertebrate communities below small dams. River Res. Appl. 2003, 19, 721–732. [Google Scholar] [CrossRef]
- Deng, Y.; Li, J.; Li, K.; Li, R. Cumulative impact of cascade power stations on water temperature. Adv. Water Sci. 2008, 19, 273–297. (In Chinese) [Google Scholar]
- Liu, L.; Chen, K.; Zhang, S. Study on cumu-lative effects of water temperature by cascade hydropower stations built on rivers. J. China Inst. Wa-Ter Resour. Hydropower Res. 2007, 5, 173–180. (In Chinese) [Google Scholar]
- Hao, H.; Deng, Y.; Li, K.; Li, R.; Li, J. Study on water temperature cumulative effects of diversion type cascade development. J. Sichuan Univ. 2009, 41, 29–34. [Google Scholar]
- Zhang, S.; Yan, J.; Li, G. Cumulative effects of cascade development project adjustment on water temperature. J. Hydraul. Eng. 2014, 45, 1336–1343. (In Chinese) [Google Scholar]
- Shi, W.; Chen, Q.; Yi, Q.; Yu, J.; Ji, Y.; Hu, L.; Chen, Y. Carbon emission from cascade reservoirs: Spatial heterogeneity and mechanisms. Environ. Sci. Technol. 2017, 51, 12175–12181. [Google Scholar] [CrossRef]
- Peng, Y.; Ji, C.; Gu, R. A multi-objective optimization model for coordinated regulation of flow and sediment in cascade reservoirs. Water Resour. Manag. 2014, 28, 4019–4033. [Google Scholar] [CrossRef]
- Sabo, J.; Ruhi, A.; Holtgrieve, G.; Elliott, V.; Arias, M.; Ngor, P.B.; Räsänen, T.; Nam, S. Designing river flows to improve food security futures in the Lower Mekong Basin. Science 2017, 358, eaao1053. [Google Scholar] [CrossRef]
- Barbosa, F.; Padisák, J.; Espíndola, E.; Borics, G.; Rocha, O. The cascading reservoir continuum concept (CRCC) and its application to the river Tietê-basin. In Proceedings of the Workshop on Theoretical Reservoir Ecology, São Paulo State, Brazil, 25–30 January 1999. [Google Scholar]
- O’Reilly, C.M.; Sharma, S.; Gray, D.K.; Hampton, S.E.; Read, J.S.; Rowley, R.J.; Schneider, P.; Lenters, J.D.; McIntyre, P.B.; Kraemer, B.M. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 2015, 42, 10773–10781. [Google Scholar] [CrossRef]
- Arora, R.; Tockner, K.; Venohr, M. Changing river temperatures in northern Germany: Trends and drivers of change. Hydrol. Process. 2016, 30, 3084–3096. [Google Scholar] [CrossRef]
Reservoir | Hydropower Capacity (MW) | Dam Height (m) | Normal Water Level (m a.s.l.) | Dead Water Level (m a.s.l.) | Storage Capacity (108 m3) | Hydraulic Residence Time (days) | Operation Year |
---|---|---|---|---|---|---|---|
Xiangjiaba | 7750 | 162 | 380 | 370 | 52 | 16 | 2012 |
Xiluodu | 13,860 | 285.5 | 600 | 540 | 129 | 37 | 2013 |
Baihetan * | 16,000 | 289 | 820 | 760 | 179 | - | 2022 |
Wudongde * | 10,200 | 270 | 950 | 920 | 43 | - | 2020 |
Site | Year | IBD | IPO (days) | IEC |
---|---|---|---|---|
XLDGS | 2014 | 0.23 | 23 | 0.92 |
2015 | 0.19 | 20 | 0.88 | |
XJBGS | 2013 | 0.12 | 16 | 1.13 |
2014 | 0.37 | 34 | 0.90 | |
2015 | 0.33 | 31 | 0.83 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, L.; Ji, D.; Liu, D.; Yang, Z.; Lorke, A. Effect of Cascading Reservoirs on the Flow Variation and Thermal Regime in the Lower Reaches of the Jinsha River. Water 2019, 11, 1008. https://doi.org/10.3390/w11051008
Long L, Ji D, Liu D, Yang Z, Lorke A. Effect of Cascading Reservoirs on the Flow Variation and Thermal Regime in the Lower Reaches of the Jinsha River. Water. 2019; 11(5):1008. https://doi.org/10.3390/w11051008
Chicago/Turabian StyleLong, Lianghong, Daobin Ji, Defu Liu, Zhengjian Yang, and Andreas Lorke. 2019. "Effect of Cascading Reservoirs on the Flow Variation and Thermal Regime in the Lower Reaches of the Jinsha River" Water 11, no. 5: 1008. https://doi.org/10.3390/w11051008
APA StyleLong, L., Ji, D., Liu, D., Yang, Z., & Lorke, A. (2019). Effect of Cascading Reservoirs on the Flow Variation and Thermal Regime in the Lower Reaches of the Jinsha River. Water, 11(5), 1008. https://doi.org/10.3390/w11051008