Performance Comparison of Conventional and Modified Upflow Anaerobic Sludge Blanket (UASB) Reactors Treating High-Strength Cattle Slaughterhouse Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate and Seed Inoculum
2.2. Experimental Setup
2.3. Analytical Methods
3. Results and Discussion
3.1. COD Removal Efficiency
3.2. Biological Oxygen Demand (BOD5) Removal
3.3. TSS Removal Profile
3.4. Fats, Oil, And Grease (FOG) Removal
3.5. pH
3.6. Color Removal Efficiency
3.7. Turbidity Removal
3.8. Scanning Electron Microscopy (SEM) Analysis
3.9. Overall Performance Study of the Conventional and Modified UASB Reactors
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jensen, P.D.; Sullivan, T.; Carney, C.; Batstone, D.J. Analysis of the potential to recover energy and nutrient resources from cattle slaughterhouses in Australia by employing anaerobic digestion. Appl. Energy 2014, 136, 23–31. [Google Scholar] [CrossRef]
- U.S. EPA. Technical Development Document for the Final Effluent Limitations Guidelines and Standards for the Meat and Poultry Products Point Source Category (40 CFR 432); USEPA: Washington, DC, USA, 2004.
- Barrera, M.; Mehrvar, M.; Gilbride, K.A.; McCarthy, L.H.; Laursen, A.E.; Bostan, V.; Pushchak, R. Photolytic treatment of organic constituents and bacterial pathogens in secondary effluent of synthetic slaughterhouse wastewater. Chem. Eng. Des. 2012, 90, 1335–1350. [Google Scholar] [CrossRef]
- Ahmadian, M.; Yousefi, N.; Van Ginkel, S.W.; Zare, M.R.; Rahimi, S.; Fatehizadeh, A. Kinetic study of slaughterhouse wastewater treatment by electrocoagulation using Fe electrodes. Water. Sci. Technol. 2012, 66, 754–760. [Google Scholar] [CrossRef] [PubMed]
- Caixeta, C.E.; Cammarota, M.C.; Xavier, A.M. Slaughterhouse wastewater treatment: Evaluation of a new three-phase separation system in a UASB reactor. Bioresour. Technol. 2002, 81, 61–69. [Google Scholar] [CrossRef]
- Bustillo-Lecompte, C.F.; Mehrvar, M.; Quiñones, E.B. Combined anaerobic-aerobic and UV/H2O2 processes for the treatment of synthetic slaughterhouse wastewater. J. Environ. Sci. Health 2013, 48, 1122–1135. [Google Scholar] [CrossRef] [PubMed]
- Rajab, A.R.; Salim, M.R.; Sohaili, J.; Anuar, A.N.; Lakkaboyana, S.K. Performance of integrated anaerobic/aerobic sequencing batch reactor treating poultry slaughterhouse wastewater. Chem. Eng. J. 2017, 313, 967–974. [Google Scholar] [CrossRef]
- Kundu, P.; Debsarkar, A.; Mukherjee, S. Treatment of slaughter house wastewater in a sequencing batch reactor: Performance evaluation and biodegradation kinetics. BioMed. Res. Int. 2013, 11. [Google Scholar] [CrossRef] [PubMed]
- Environmental Requirements: A Guide for Investors. Department of Environment, Ministry of Natural Resources and Environment: Wisma Sumber Asli, Precinct 4 Federal Government Administrative Centre, 62574 Putrajaya, Malaysia. 2010. Available online: http://www.doe.gov.my/eia/wp-content/uploads/2012/03/A-Guide-For-Investors1.pdf (accessed on 2 February 2019).
- Bustillo-Lecompte, C.F.; Mehrvar, M. Slaughterhouse wastewater characteristics, treatment, and management in the meat processing industry: A review on trends and advances. J. Environ. Manag. 2015, 161, 287–302. [Google Scholar] [CrossRef] [PubMed]
- Johns, M. Developments in wastewater treatment in the meat processing industry: A review. Bioresour. Technol. 1995, 54, 203–216. [Google Scholar] [CrossRef]
- Massé, D.I.; Masse, L. The effect of temperature on slaughterhouse wastewater treatment in anaerobic sequencing batch reactors. Bioresour. Technol. 2001, 76, 91–98. [Google Scholar] [CrossRef]
- Bernet, N.; Delgenes, N.; Akunna, J.C.; Delgenes, J.P.; Moletta, R. Combined anaerobic–aerobic SBR for the treatment of piggery wastewater. Water Res. 2000, 34, 611–619. [Google Scholar] [CrossRef]
- Saddoud, A.; Sayadi, S. Application of acidogenic fixed-bed reactor prior to anaerobic membrane bioreactor for sustainable slaughterhouse wastewater treatment. J. Hazard. Mater. 2007, 149, 700–706. [Google Scholar] [CrossRef] [PubMed]
- López-López, A.; Vallejo-Rodríguez, R.; Méndez-Romero, D. Evaluation of a combined anaerobic and aerobic system for the treatment of slaughterhouse wastewater. Environ. Technol. 2010, 31, 319–326. [Google Scholar] [CrossRef]
- Debik, E.; Coskun, T. Use of the Static Granular Bed Reactor (SGBR) with anaerobic sludge to treat poultry slaughterhouse wastewater and kinetic modeling. Bioresour. Technol. 2009, 100, 2777–2782. [Google Scholar] [CrossRef]
- Chan, Y.J.; Fong, C.M.; Chung, L.L.; Hassell, D.G. A review on anaerobic–aerobic treatment of industrial and municipal wastewater. Chem. Eng. J. 2009, 155, 1–18. [Google Scholar] [CrossRef]
- Daud, M.K.; Hina, R.; Muhammad, F.A.; Shafaqat, A.; Muhammad, M.N.; Zhu, J.S. Review of Upflow Anaerobic Sludge Blanket Reactor Technology: Effect of Different Parameters and Developments for Domestic Wastewater Treatment. J. Chem. 2018, 2018, 1596319. [Google Scholar] [CrossRef]
- Musa, M.; Syazwani, I.; Hasfalina, C.M.; Daud, N.N. Effect of Organic Loading Rate on Anaerobic Digestion Performance of Mesophilic (UASB) Reactor Using Cattle Slaughterhouse Wastewater as Substrate. Int. J. Environ. Res. Public Health 2018, 15, 2220. [Google Scholar] [CrossRef]
- Mittal, G.S. Treatment of wastewater from abattoirs before land application—A review. Bioresour. Technol. 2006, 97, 1119–1135. [Google Scholar] [CrossRef]
- Nacheva, P.M.; Pantoja, M.R.; Serrano, E. Treatment of slaughterhouse wastewater in upflow anaerobic sludge blanket reactor. Water. Sci. Technol. 2011, 63, 877–884. [Google Scholar] [CrossRef]
- Rajakumar, R.; Meenambal, T. Comparative Study on Start-Up Performance of HUASB and AF Reactors Treating Poultry Slaughterhouse Wastewater. Int. J. Environ. Res. 2008, 2, 401–410. [Google Scholar]
- Latif, M.A.; Rumana, G.; Zularisam, A.W.; Anwar, A. Integrated application of upflow anaerobic sludge blanket reactor for the treatment of wastewaters. Water Res. 2011, 45, 4683–4699. [Google Scholar] [CrossRef] [PubMed]
- Idrus, S.; Banks, C.; Heaven, S. Assessment of the potential for biogas production from wheat straw leachate in upflow anaerobic sludge blanket digesters. Water Sci. Technol. 2012, 66, 2737–2744. [Google Scholar] [CrossRef] [PubMed]
- Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association/American Water Works Association/Water Environment Federation: Washington, DC, USA, 2005.
- Cirne, I.; Jaime, B.; Yuri, G.; Elizabete, L. Methods for determination of oil and grease contents in wastewater from the petroleum industry. Chem. Chem. Technol. 2016, 10, 437–444. [Google Scholar] [CrossRef]
- Yoon, Y.M.; Seung, K.H.; Seung, Y.; Chang, H. Potential of anaerobic digestion for material recovery and energy production in waste biomass from a poultry slaughterhouse. Waste Manag. 2014, 34, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Jianzheng, L.; Yupeng, Z.; Antwi, P.; En, S.; Xue, C.; Jia, M. Influence of glucose fermentation on CO2 assimilation to acetate in homoacetogen Blautia coccoides GA-1. J. Ind. Microbiol. Biotechnol. 2015, 42, 1217–1224. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Boe, K.; Angelidaki, I. Biogas production from potato-juice, a by-product from potato-starch processing, in upflow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors. Bioresour. Technol. 2011, 102, 5734–5741. [Google Scholar] [CrossRef]
- Jing, Z.; Yong, H.; Qigui, N.; Yuyu, L.; Yu, L.Y.; Xiaochang, C.W. UASB performance and electron competition between methane-producing archaea and sulfate-reducing bacteria in treating sulfate-rich wastewater containing ethanol and acetate. Bioresour. Technol. 2013, 137, 349–357. [Google Scholar] [CrossRef]
- Dendooven, L.; Escamilla, E.S. Poultry slaughter wastewater treatment with an up-flow anaerobic sludge blanket (UASB) reactor. Bioresour. Technol. 2005, 96, 1730–1736. [Google Scholar] [CrossRef]
- Kobya, M.; Senturk, E.; Bayramoglu, M. Treatment of poultry slaughterhouse wastewater by electrocoagulation. J. Hazard. Mater. 2006, 133, 172–176. [Google Scholar] [CrossRef]
- Chin, K.; Wong, K. Thermophilic anaerobic digestion of palm oil mill effluent. Water Res. 1983, 17, 993–995. [Google Scholar] [CrossRef]
- Mustapha, S.; Ashhuby, B.; Rashid, M.; Azni, I. Start-up strategy of a thermophilic upflow anaerobic filter for treating palm oil mill effluent. Process Saf. Environ. Prot. 2003, 81, 262–266. [Google Scholar] [CrossRef]
- Sreekanth, D.; Sivaramakrishna, D.; Himabindu, V.; Anjaneyulu, Y. Thermophilic treatment of bulk drug pharmaceutical industrial wastewaters by using hybrid up flow anaerobic sludge blanket reactor. Bioresour. Technol. 2009, 100, 2534–2539. [Google Scholar] [CrossRef]
- Salminen, E.; Rintala, J. Anaerobic digestion of organic solid poultry slaughterhouse waste—A review. Bioresour. Technol. 2002, 83, 13–26. [Google Scholar] [CrossRef]
- Muller, C.D.; Gough, H.L.; Nelson, D.; Ferguson, J.; Stensel, H.; David, H.; Randolph, P. Investigating the Process Constraints of the Addition of Co-digestion Substrates to Temperature Phased Anaerobic Digestion. Proc. Water Environ. Fed. 2009, 4810–4825. [Google Scholar] [CrossRef]
- Jeganathan, J.; Nakhla, G.; Bassi, A. Long-term performance of high-rate anaerobic reactors for the treatment of oily wastewater. Environ. Sci. Technol. 2006, 40, 6466–6472. [Google Scholar] [CrossRef]
- Alves, M.M.; Mota, J.A.; Álvares, R.M.; Pereira, M.A.; Mota, M. Effect of lipids and oleic acid on biomass development in anaerobic fixed-bed reactors. Part I: Biofilm growth and activity. Water Res. 2001, 35, 255–263. [Google Scholar] [CrossRef]
- Ma, J.; Zhao, Q.B.; Laurens, L.L.; Jarvis, E.E.; Nagle, N.J.; Chen, S.; Frear, C.S. Mechanism, kinetics and microbiology of inhibition caused by long-chain fatty acids in anaerobic digestion of algal biomass. Biotechnol. Biofuels 2015, 8, 141. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, S.; Liu, Y.; Li, B.; Wang, B.; Peng, Y. Long-term effect of pH on short-chain fatty acids accumulation and microbial community in sludge fermentation systems. Bioresour. Technol. 2015, 197, 56–63. [Google Scholar] [CrossRef]
- Abudi, Z.N.; Hu, Z.; Sun, N.; Xiao, B.; Rajaa, N.; Liu, C.; Guo, D. Batch anaerobic co-digestion of OFMSW (organic fraction of municipal solid waste), TWAS (thickened waste activated sludge) and RS (rice straw): Influence of TWAS and RS pretreatment and mixing ratio. Energy 2016, 107, 131–140. [Google Scholar] [CrossRef]
- Wang, P.; Wang, H.; Qiu, Y.; Ren, L.; Jiang, B. Microbial characteristics in anaerobic digestion process of food waste for methane production—A review. Bioresour. Technol. 2018, 248, 29–36. [Google Scholar] [CrossRef]
- Leung, D.Y.; Wang, J. An overview on biogas generation from anaerobic digestion of food waste. Int. J. Green Energy 2016, 13, 119–131. [Google Scholar] [CrossRef]
- Abdulsalam, M.; Hasfalina, C.M.; Aida, I.I.; Khairul, F.Y.; Zurina, Z.A. Treatment of Palm Oil Mill Effluent Using Membrane Bioreactor: Novel Processes and Their Major Drawbacks. Water 2018, 10, 1165. [Google Scholar] [CrossRef]
- Van Lier, J.B.; Mahmoud, N.; Zeeman, G. Anaerobic wastewater treatment. In Biological Wastewater Treatment, Principles, Modelling and Design; IWA Publishing: London, UK, 2008; pp. 415–456. [Google Scholar]
- Lew, B.; Lustig, I.; Beliavski, M.; Tarre, S.; Green, M. An integrated UASB-sludge digester system for raw domestic wastewater treatment in temperate climates. Bioresour. Technol. 2011, 102, 4921–4924. [Google Scholar] [CrossRef]
- Ziganshin, A.M.; Schmidt, T.; Scholwin, F.; Il’inskaya, O.N.; Harms, H.; Kleinsteube, S. Bacteria and archaea involved in anaerobic digestion of distillers grains with solubles. Appl. Microbiol. Biotechnol. 2011, 89, 2039–2052. [Google Scholar] [CrossRef] [PubMed]
- Karakashev, D.; Batstone, D.J.; Angelidaki, I. Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Appl. Environ. Microbiol. 2005, 71, 331–338. [Google Scholar] [CrossRef] [PubMed]
- De Vrieze, J.; Hennebel, T.; Boon, N.; Verstraete, W. Methanosarcina: The rediscovered methanogen for heavy duty biomethanation. Bioresour. Technol. 2012, 112, 1–9. [Google Scholar] [CrossRef]
- Zhou, W.; IImai, T.; Ukita, M.; Li, F.; Yuasa, A. Effect of loading rate on the granulation process and granular activity in a bench scale UASB reactor. Bioresour. Technol. 2007, 98, 1386–1392. [Google Scholar] [CrossRef]
- Musa, M.A.; Idrus, S.; Hasfalina, C.M.; Daud, N.N. Wastewater Treatment and Biogas Recovery Using Anaerobic Membrane Bioreactors (AnMBRs): Strategies and Achievements. Energies 2018, 11, 1675. [Google Scholar] [CrossRef]
- Halalsheh, M.; Koppes, J.; den Elzen, J.; Zeeman, G.; Fayyad, M.; Lettinga, G. Effect of SRT and temperature on biological conversions and the related scum-forming potential. Water Res. 2005, 39, 2475–2482. [Google Scholar] [CrossRef]
Parameters | Unit | Average Value |
---|---|---|
pH | - | 6.9 ± 0.8 |
Temperature | °C | 27.6 ± 0.5 |
COD | mg/L | 32,000 ± 112 |
BOD5 | mg/L | 17,158 ± 95 |
TSS | mg/L | 22,300 ± 212 |
VSS | mg/L | 18,200 ± 182 |
FOG | mg/L | 1024 ± 34 |
TN | mg/L | 915 ± 18 |
Protein | mg/L | 5709.6 ± 18 |
Color | Pt-Co | 16,426.8 ± 334 |
Turbidity | FAU | 12,500 ± 76 |
Alkalinity | mg/L as CaCO3 | 582 ± 14 |
Fixed Parameters | Units | Value | |||
---|---|---|---|---|---|
Temperature | °C | 36 ± 1 | |||
HRT | day | 1 | |||
Experimental run | Day | Feed COD concentration (g L−1) | Corresponding OLR (g L−1 day−1) | Dilution factor | Influent volume/flow rate |
Stage I | 1–11 | 3.5 | 1.75 | 9.2 | 6 L/day |
Stage II | 11–23 | 6.0 | 3 | 5.4 | 6 L/day |
Stage III | 23–35 | 10 | 5 | 3.2 | 6 L/day |
Stage IV | 35–47 | 20 | 10 | 1.6 | 6 L/day |
Stage V | 47–59 | 28 | 14 | 1.2 | 6 L/day |
Stage VI | 59–71 | 32 | 16 | 1 | 6 L/day |
Fixed Parameter | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameter | ||||||||||||||||||
Temperature 35 °C | ||||||||||||||||||
HRT 24 h | ||||||||||||||||||
Parameters at Steady State Stage | ||||||||||||||||||
Run | Duration (weeks) | Influent COD (g/Lday−1) | OLR (g/Lday−1) | HRT (h) | Average COD Removal (%) | BOD5 Removal Efficiency (%) | Average TSS Removal (%) | Average FOG Removal (%) | Average pH | Average Color Removal (%) | Average Turbidity Removal (%) | |||||||
R1,R2 | R1,R2 | R1,R2 | R1 | R2 | R1 | R2 | R1 | R2 | R1 | R2 | R1 | R2 | R1 | R2 | R1 | R2 | ||
I | 2 | 3.5 | 1.75 | 24 | 92 | 93 | 93 | 95 | 90 | 92 | 89 | 90 | 6.7 | 6.8 | 91 | 93 | 92 | 96 |
II | 2 | 6 | 3 | 24 | 91 | 93 | 94 | 97 | 92 | 94 | 81 | 90 | 6.7 | 6.8 | 94 | 97 | 92 | 94 |
III | 2 | 10 | 5 | 24 | 90 | 94 | 93 | 98 | 95 | 95 | 74 | 84 | 6.7 | 7.0 | 83 | 85 | 75 | 90 |
IV | 2 | 20 | 10 | 24 | 54 | 95 | 71 | 95 | 56 | 92 | 48 | 73 | 6.2 | 7.0 | 52 | 76 | 41 | 81 |
V | 2 | 28 | 14 | 24 | 50 | 73 | 61 | 77 | 44 | 91 | 42 | 65 | 5.7 | 6.9 | 41 | 60 | 35 | 72 |
VI | 2 | 32 | 16 | 24 | 50 | 67 | 62 | 75 | 43 | 88 | 34 | 54 | 5.2 | 7.1 | 38 | 54 | 30 | 66 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musa, M.A.; Idrus, S.; Che Man, H.; Nik Daud, N.N. Performance Comparison of Conventional and Modified Upflow Anaerobic Sludge Blanket (UASB) Reactors Treating High-Strength Cattle Slaughterhouse Wastewater. Water 2019, 11, 806. https://doi.org/10.3390/w11040806
Musa MA, Idrus S, Che Man H, Nik Daud NN. Performance Comparison of Conventional and Modified Upflow Anaerobic Sludge Blanket (UASB) Reactors Treating High-Strength Cattle Slaughterhouse Wastewater. Water. 2019; 11(4):806. https://doi.org/10.3390/w11040806
Chicago/Turabian StyleMusa, Mohammed Ali, Syazwani Idrus, Hasfalina Che Man, and Nik Norsyahariati Nik Daud. 2019. "Performance Comparison of Conventional and Modified Upflow Anaerobic Sludge Blanket (UASB) Reactors Treating High-Strength Cattle Slaughterhouse Wastewater" Water 11, no. 4: 806. https://doi.org/10.3390/w11040806