The Oxygen Transfer Capacity of Submerged Plant Elodea densa in Wastewater Constructed Wetlands
Abstract
:1. Introduction
- E. densa increases the oxygen saturation in an aqueous environment;
- the degree of oxygen recovery and pollutants removal efficiency depends on the initial wastewater pollution level.
2. Materials and Methods
2.1. General Comments
2.2. Materials
2.3. Experimental Design
2.3.1. Stage 1—The Oxygen Concentration Development in Microcosm with E. densa
2.3.2. Stage 2—The Efficiency of Wastewater Treatment by Submerged Plant E. densa
2.3.3. Stage 3—The E. densa OTC Determination
2.4. Results Analysis
3. Results and Discussion
3.1. Stage 1—The Oxygen Concentration Development in Microcosm with E. densa
3.2. The Efficiency of Wastewater Treatment by Submerged Plant E. densa
3.3. The E. densa OTC Determination
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vymazal, J. The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: A review of a recent development. Water Res. 2013, 47, 4795–4811. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J. Plants used in constructed wetlands with horizontal subsurface flow: A review. Hydrobiologia 2011, 674, 133–156. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, J.; Ngo, H.H.; Guo, W.; Hu, Z.; Liang, S.; Fan, J.; Liu, H. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Bioresour. Technol. 2015, 175, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zhang, J.; Li, C.; Fan, J.; Zou, Y. Mass balance study on phosphorus removal in constructed wetland microcosms treating polluted river water. Clean-Soil Air Water 2013, 41, 844–850. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, J.; Wei, R.; Liang, S.; Li, C.; Xie, H. Nitrogen transformations and balance in constructed wetlands for slightly polluted river water treatment using different macrophytes. Environ. Sci. Pollut. Res. 2013, 20, 443–451. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, Y.; Liu, Y.; Chen, B. Arsenic uptake, accumulation and phytofiltration by duckweed (Spirodela polyrhiza L.). J. Environ. Sci. 2011, 23, 601–606. [Google Scholar] [CrossRef]
- Reddy, K.R. Fate of nitrogen and phosphorus in a waste-water retention reservoir containing aquatic macrophytes. J. Environ. Qual. 2003, 12, 137–141. [Google Scholar] [CrossRef]
- Meng, P.; Pei, H.; Hu, W.; Shao, Y.; Li, Z. How to increase microbial degradation in constructed wetlands: Influencing factors and improvement measures. Bioresour. Technol. 2014, 157, 316–326. [Google Scholar] [CrossRef]
- Wu, S.; Kuschk, P.; Brix, H.; Vymazal, J.; Dong, R. Development of constructed wetlands in performance intensifications for wastewater treatment: A nitrogen and organic matter targeted review. Water Res. 2014, 57, 40–55. [Google Scholar] [CrossRef] [PubMed]
- Reed, S.C.; Middlebrooks, E.J.; Crites, R.W. Natural Systems for Waste Management and Treatment; McGraw-Hill Book Company: New York, NY, USA, 1988. [Google Scholar]
- Keskinkan, O. Investigation of heavy metal removal by a submerged aquatic plant (Myriophyllum spicatum) in a batch system. Asian J. Chem. 2005, 17, 1507–1517. [Google Scholar]
- Reddy, K.R.; D’Angelo, E.M.; DeBusk, T.A. Oxygen transport through aquatic macrophytes: the role in wastewater treatment. J. Environ. Qual. 1989, 19, 261–267. [Google Scholar] [CrossRef]
- Moshiri, G.A. Constructed Wetlands for Water Quality Improvement. In Constructed Wetlands for Water Quality Improvement; Lewis Publishers: Bocca Raton, FL, USA, 1993; ISBN 9780873715508. [Google Scholar]
- Brix, H.; Schierup, H. The use of aquatic macrophytes in water-pollution control. Ambio 1989, 18, 100–107. [Google Scholar]
- Rai, U.N.; Sinha, S.; Tripathi, R.D.; Chandra, P. Wastewater treatability potential of some aquatic macrophytes: Removal of heavy metals. Ecol. Eng. 1995, 5, 5–12. [Google Scholar] [CrossRef]
- Goulet, R.R.; Lalonde, J.D.; Munger, C.; Dupuis, S.; Dumont-Frenette, G.; Prémont, S.; Campbell, P.G.C. Phytoremediation of effluents from aluminum smelters: A study of Al retention in mesocosms containing aquatic plants. Water Res. 2005, 39, 2291–2300. [Google Scholar] [CrossRef] [PubMed]
- Fritioff, Å.; Greger, M. Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans. Chemosphere 2006, 63, 220–227. [Google Scholar] [CrossRef]
- Lesage, E.; Mundia, C.; Rousseau, D.P.L.; Van de Moortel, A.M.K.; Du Laing, G.; Meers, E.; Tack, F.M.G.; De Pauw, N.; Verloo, M.G. Sorption of Co, Cu, Ni and Zn from industrial effluents by the submerged aquatic macrophyte Myriophyllum spicatum L. Ecol. Eng. 2007, 30, 320–325. [Google Scholar] [CrossRef]
- Gallon, C.; Munger, C.; Prémont, S.; Campbell, P.G.C. Hydroponic study of aluminum accumulation by aquatic plants: Effects of fluoride and pH. Water. Air. Soil Pollut. 2004, 153, 135–155. [Google Scholar] [CrossRef]
- Abu Bakar, A.F.; Yusoff, I.; Fatt, N.T.; Othman, F.; Ashraf, M.A. Arsenic, zinc, and aluminium removal from gold mine wastewater effluents and accumulation by submerged aquatic plants (Cabomba piauhyensis, Egeria densa, and Hydrilla verticillata). Biomed. Res. Int. 2013, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ng, W.J.; Sim, T.S.; Ong, S.L.; Kho, K.; Ho, L.M.; Tay, S.H.; Goh, C.C. The effect of Elodea densa on aquaculture water quality. Aquaculture 1990, 84, 267–276. [Google Scholar] [CrossRef]
- Yarrow, M.; Marin, V.H.; Finlayson, C.; Tironi, A.; Delgado, L.E.; Fisher, F. The ecology of Egeria densa Planchon (Liliopsida: Alismatales): A wetland ecosystem engineer? Rev. Chil. Hist. Nat. 2009, 82, 299–313. [Google Scholar] [CrossRef]
- Darrin, H. Invasive species of the Pacific Northwest: Brazilian Elodea, Egeria densa, Anacharis, Philotria densa, Giant Elodea, Brazilian waterweed. 2009. Available online: http://depts.washington.edu/oldenlab/wordpress/wp-content/uploads/2013/03/Egeria-densa_Darrin.pdf (accessed on 12 March 2019).
- Mjelde, M.; Lombardo, P.; Berge, D.; Johansen, S.W. Mass invasion of non-native Elodea canadensis Michx. in a large, clear-water, species-rich Norwegian lake – impact on macrophyte biodiversity. Ann. Limnol.-Int. J. Limnol. 2012, 48, 225–240. [Google Scholar] [CrossRef]
- Rimac, A.; Stanković, I.; Alegro, A.; Gottstein, S.; Koletić, N.; Vuković, N.; Šegota, V.; Žižić-Nakić, A. The Brazilian elodea (Egeria densa Planch.) invasion reaches Southeast Europe. Bioinvasions Rec. 2018, 7, 381–389. [Google Scholar] [CrossRef]
- Heikkinen, R.; Leikola, N.; Fronzek, S.; Lampinen, R.; Toivonen, H. Predicting distribution patterns and recent northward range shift of an invasive aquatic plant: Elodea canadensis in Europe. BioRisk 2009, 2, 1–32. [Google Scholar] [CrossRef]
- Thiébaut, G.; Gillard, M.; Deleu, C. Growth, regeneration and colonisation of Egeria densa fragments: The effect of autumn temperature increases. Aquat. Ecol. 2016, 50, 175–185. [Google Scholar] [CrossRef]
- Hussner, A.; van Dam, H.; Vermaat, J.E.; Hilt, S. Comparison of native and neophytic aquatic macrophyte developments in a geothermally warmed river and thermally normal channels. Fundam. Appl. Limnol. 2014, 185, 155–165. [Google Scholar] [CrossRef]
- Barnes, M.A.; Jerde, C.L.; Keller, D.; Chadderton, W.L.; Howeth, J.G.; Lodge, D.M. Viability of aquatic plant fragments following desiccation. Invasive Plant Sci. Manag. 2013, 6, 320–325. [Google Scholar] [CrossRef]
- Maleva, M.; Borisova, G.; Chukina, N.; Nekrasova, G.; Prasad, M.N.V. Influence of exogenous urea on photosynthetic pigments, 14 CO2 uptake, and urease activity in Elodea densa—environmental implications. Environ. Sci. Pollut. Res. 2013, 20, 6172–6177. [Google Scholar] [CrossRef]
- Grudnik, Z.; Germ, M. Spatial pattern of native species Myriophyllum spicatum and invasive alien species Elodea nuttallii after introduction of the latter one into the Drava River (Slovenia). Biologia (Bratisl). 2013, 68, 202–209. [Google Scholar] [CrossRef]
- Malec, P.; Maleva, M.G.; Prasad, M.N.V.; Strzałka, K. Identification and characterization of Cd-induced peptides in Egeria densa (water weed): Putative role in Cd detoxification. Aquat. Toxicol. 2009, 95, 213–221. [Google Scholar] [CrossRef]
- Bialowiec, A.; Davies, L.; Albuquerque, A.; Randerson, P. Nitrogen removal from landfill leachate in constructed wetlands with reed and willow: Redox potential in the root zone. J. of Env. Manag. 2012, 97, 22–27. [Google Scholar] [CrossRef]
- Rice, E.W.; Baird, R.B.; Eaton, A.D. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association; American Water Works Association; Water Environment Federation: Washington, DC, USA, 2017; ISBN 9780875532875. [Google Scholar]
- Randerson, P.F.; Moran, C.; Bialowiec, A. Oxygen transfer capacity of willow (Salix viminalis L.). Biomass Bioenerg. 2011, 35, 2306–2309. [Google Scholar] [CrossRef]
- Sorrell, B.K.; Dromgoole, F.I. Oxygen transport in the submerged freshwater macrophyte Egeria densa planch. I. Oxygen production, storage and release. Aquat. Bot 1987, 28, 63–80. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Elser, J.J.; Olson, K.M. Effects of roots of Myriophyllum verticillatum L. on sediment redox conditions. Aquat. Bot. 1983, 17, 243–249. [Google Scholar] [CrossRef]
- Sand-Jensen, K.; Prahl, C.; Stokholm, H. Oxygen release from roots of submerged aquatic macrophytes. Oikos 1982, 38, 349. [Google Scholar] [CrossRef]
- Waters, I.; Armstrong, W.; Thompson, C.; Setter, T.L.; Adkinis, S.; Gibbs, J.G.H. Diurnal changes in radial oxygen loss and ethanol metabolism in roots of submerged and non-submerged rice seedlings. New Phytol. 1989, 113, 439–451. [Google Scholar] [CrossRef]
- Dacey, J.; Klug, M. Tracer studies of gas circulation in Nuphar: 1802 and 14 CO2 transport. Physiol. Plant. 1982, 56, 361–366. [Google Scholar] [CrossRef]
- Christensen, P.B.; Revsbech, N.P.; Sand-Jensen, K. Microsensor analysis of oxygen in the rhizosphere of the aquatic macrophyte Littorella uniflora (L.) Ascherson. Plant Physiol. 1994, 105, 847–852. [Google Scholar] [CrossRef]
- Tanner, C.C.; Clayton, J.S.; Upsdell, M.P. Effect of loading rate and planting on treatment of dairy farm wastewaters in constructed wetlands—I. Removal of oxygen demand, suspended solids and faecal coliforms. Water Res. 1995, 29, 17–26. [Google Scholar] [CrossRef]
- Chazarenc, F.; Maltais-Landry, G.; Troesch, S.; Comeau, Y.; Brisson, J. Effect of loading rate on performance of constructed wetlands treating an anaerobic supernatant. Water Sci. Technol. 2007, 56, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Mæhlum, T.; Stålnacke, P. Removal efficiency of three cold-climate constructed wetlands treating domestic wastewater: Effects of temperature, seasons, loading rates and input concentrations. Water Sci. Technol. 1999, 40, 273–281. [Google Scholar] [CrossRef]
- Tanner, C.C. Plants as ecosystem engineers in subsurface-flow treatment wetlands. Water Sci. Technol. 2001, 44, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Stein, O.R.; Hook, P.B. Temperature, plants and oxygen: How does season affect constructed wetland performance? J. Environ. Sci. Health 2005, 40, 1331–1342. [Google Scholar] [CrossRef]
- Brix, H. Do macrophytes play a role in constructed treatment wetlands? Water Sci. Technol. 1997, 35, 11–17. [Google Scholar] [CrossRef]
- Albuquerque, A.; Makinia, J.; Pagilla, K. Impact of aeration conditions on the removal of low concentrations of nitrogen in a tertiary partially aerated biological filter. Ecol. Eng. 2012, 44, 44–52. [Google Scholar] [CrossRef]
- Rakocy, J.E.; Allison, R. Evaluation of a closed recirculating system for the culture of Tilapia and aquatic macrophytes. Bio-Eng. Symp. Fish Cult 1981, 296–307. [Google Scholar]
- Kuschk, P.; Wießner, A.; Kappelmeyer, U.; Weißbrodt, E.; Kästner, M.; Stottmeister, U. Annual cycle of nitrogen removal by a pilot-scale subsurface horizontal flow in a constructed wetland under moderate climate. Water Res. 2003, 37, 4236–4242. [Google Scholar] [CrossRef]
- Williams, J.B.; May, E.; Ford, M.G.; Butler, J.E. Nitrogen transformations in gravel bed hydroponic beds used as a tertiary treatment stage for sewage effluents. Water Sci. Technol. 1994, 29, 29–36. [Google Scholar] [CrossRef]
- Vymazal, J. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. 2007, 380, 1–3. [Google Scholar] [CrossRef]
- Vymazal, J.; Kropfelova, L. Wastewater Treatment in Constructed Wetlands with Horizontal Sub-surface Flow; Springer: Berlin, Germany, 2008; p. 566. [Google Scholar]
- Stottmeister, U.; Wieβner, A.; Kuschk, P.; Kappelmeyer, U.; Kästner, M.; Bederski, O. Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol. Adv. 2003, 22, 93–117. [Google Scholar] [CrossRef]
- Knowles, R. Denitrifiers associated with methanotrophs and their potential impact on the nitrogen cycle. Ecol. Eng. 2005, 24, 441–446. [Google Scholar] [CrossRef]
- Yu, X.; Qi, Z.; Zhang, X.; Yu, P.; Liu, B.; Zhang, L.; Fu, L. Nitrogen loss and oxygen paradox in full-scale biofiltration for drinking water treatment. Water Res. 2007, 41, 1455–1464. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, A.; Oliveira, J.; Semitela, S.; Amaral, L. Influence of bed media characteristics on ammonia and nitrate removal in shallow horizontal subsurface flow constructed wetlands. Bioresour. Technol. 2009, 100, 6269–6277. [Google Scholar] [CrossRef] [PubMed]
- Paredes, D.; Kuschk, P.; Mbwette, T.; Stange, F.; Müller, R.; Köser, H. New aspects of microbial nitrogen transformations in the context of wastewater treatment – A review. Eng. Life Sci. 2007, 7, 13–25. [Google Scholar] [CrossRef]
- Tao, W.; Wang, J. Effects of vegetation, limestone and aeration on nitratation, anammox and denitrification in wetland treatment systems. Ecol. Eng. 2009, 35, 836–842. [Google Scholar] [CrossRef]
- Shipin, O.; Koottatep, T.; Khanh, N.T.T.T.; Polprasert, C. Integrated natural treatment systems for developing communities: Low tech N-removal through the fluctuacting microbial pathways. Water Sci. Technol. 2005, 51, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Randerson, P.F. Constructed wetlands and vegetation filters: An ecological approach to wastewater treatment. Environ. Biotechnol. 2006, 2, 78–79. [Google Scholar]
- Kemp, W.M.; Murray, L. Oxygen release from roots of the submersed macrophyte Potamogeton perfoliatus L.: Regulating factors and ecological implications. Aquat. Bot. 1986, 26, 271–283. [Google Scholar] [CrossRef]
Bottle Number | Plant Wet Mass | Plant Length | Plants Wet Mass to Length Ratio |
---|---|---|---|
g w.m. | cm | g w.m. cm−1 | |
1 | 6.0 | 36.0 | 0.167 |
2 | 5.5 | 34.0 | 0.162 |
3 | 5.5 | 29.2 | 0.188 |
4 | 5.5 | 38.0 | 0.145 |
5 | 6.0 | 36.0 | 0.167 |
6 | 6.0 | 37.0 | 0.162 |
7 | 5.5 | 33.8 | 0.163 |
8 | 6.5 | 38.0 | 0.171 |
9 | 5.0 | 36.2 | 0.138 |
10 | 5.0 | 36.0 | 0.139 |
11 | 4.5 | 35.0 | 0.129 |
12 | 3.5 | 30.5 | 0.115 |
13 | 6.0 | 36.2 | 0.166 |
14 | 6.5 | 33.5 | 0.194 |
15 | 5.0 | 33.0 | 0.152 |
16 | 3.5 | 34.0 | 0.103 |
17 | 6.0 | 37.0 | 0.162 |
18 | 5.0 | 38.7 | 0.129 |
19 | 4.5 | 36.5 | 0.123 |
20 | 7.0 | 36.0 | 0.194 |
Sum | 108.0 | 704.6 | - |
Average | 5.4 ± 0.93 | 35.2 ± 2.42 | 0.153 ± 0.026 |
Coefficient of variation | 0.17 | 0.07 | 0.166 |
Bottle Number | Plant Number (Table 1) | Wastewater Concentration |
---|---|---|
1′ | 1; 2 | 100% |
2′ | 3; 4 | 50% |
3′ | 6; 11 | 25% |
4′ | 7; 8 | 0% |
5′ | 9; 10 | 100% |
6′ | 12; 19 | 50% |
7′ | 13; 14 | 25% |
8′ | 16; 17 | 0% |
9′ | - | 100% |
10′ | - | 50% |
11′ | - | 25% |
12′ | - | 0% |
Concentration | Biomass Growth (mg w.m) |
---|---|
100% | 2.6 |
50% | 3.75 |
25% | 5.25 |
0% | 2.2 |
Average | 3.45 |
Standard deviation | ±1.37 |
Coefficient of variation | 0.40 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Białowiec, A.; Sobieraj, K.; Pilarski, G.; Manczarski, P. The Oxygen Transfer Capacity of Submerged Plant Elodea densa in Wastewater Constructed Wetlands. Water 2019, 11, 575. https://doi.org/10.3390/w11030575
Białowiec A, Sobieraj K, Pilarski G, Manczarski P. The Oxygen Transfer Capacity of Submerged Plant Elodea densa in Wastewater Constructed Wetlands. Water. 2019; 11(3):575. https://doi.org/10.3390/w11030575
Chicago/Turabian StyleBiałowiec, Andrzej, Karolina Sobieraj, Grzegorz Pilarski, and Piotr Manczarski. 2019. "The Oxygen Transfer Capacity of Submerged Plant Elodea densa in Wastewater Constructed Wetlands" Water 11, no. 3: 575. https://doi.org/10.3390/w11030575