Measurement of Permeability and Comparison of Pavements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Pavement Systems
2.2.1. JW Eco-Technology
2.2.2. Impermeable Concrete
2.2.3. Pervious Concrete
2.3. Testing Methods
2.3.1. NCAT Permeameter
2.3.2. ASTM C1701/C1781M and C1781/C1781M Standards
2.3.3. Square Frame
2.4. Test Location
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables; Working Paper No. ESA/P/WP/248; United Nations: New York, NY, USA, 2017. [Google Scholar]
- World Urbanization Prospects: The 2018 Revision. Available online: https://population.un.org/wup/Publications/Files/WUP2018-KeyFacts.pdf (accessed on 17 January 2019).
- Liu, C.M.; Chen, J.W.; Hsieh, Y.S.; Liou, M.L.; Chen, T.H. Build Sponge eco-cities to adapt hydroclimatic hazards. In Handbook of Climate Change Adaptation; Filho, W.L., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1997–2009. [Google Scholar]
- Doulos, L.; Santamouris, M.; Livada, I. Passive cooling of outdoor urban spaces: The role of materials. Sol. Energy 2004, 77, 231–249. [Google Scholar] [CrossRef]
- Hibbs, B.J.; Sharp, J.M., Jr. Hydrogeological impacts of urbanization. Environ. Eng. Geosci. 2012, 18, 3–24. [Google Scholar] [CrossRef]
- Higashiyama, H.; Sano, M.; Nakanishi, F.; Takahashi, O.; Tsukuma, S. Field measurements of road surface temperature of several asphalt pavements with temperature rise reducing function. Case Stud. Constr. Mater. 2016, 4, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Asaeda, T.; Ca, V.T. Characteristics of permeable pavement during hot summer weather and impact on the thermal environment. Build. Environ. 2000, 4, 363–375. [Google Scholar] [CrossRef]
- Wilson, C.E.; Hunt, W.F.; Winston, R.J.; Smith, P. Comparison of runoff quality and quantity from a commercial low-impact and conventional development in Raleigh, North Carolina. J. Environ. Eng. 2014, 141, 05014005. [Google Scholar] [CrossRef]
- Roseen, R.M.; Ballestero, T.P.; Houle, J.J.; Briggs, J.F.; Houle, K.M. Water quality and hydrologic performance of a porous asphalt pavement as a storm-water treatment strategy in a cold climate. J. Environ. Eng. 2011, 138, 81–89. [Google Scholar] [CrossRef]
- Line, D.E.; Brown, R.A.; Hunt, W.F.; Lord, W.G. Effectiveness of LID for commercial development in North Carolina. J. Environ. Eng. 2011, 138, 680–688. [Google Scholar] [CrossRef]
- Luck, J.D.; Workman, S.R.; Coyne, M.S.; Higgins, S.F. Solid material retention and nutrient reduction properties of pervious concrete mixtures. Biosyst. Eng. 2008, 100, 401–408. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; World Meteorological Organization (WMO): Geneva, Switzerland, 2018; 32p. [Google Scholar]
- Collins, K.A.; Hunt, W.F.; Hathaway, J.M. Evaluation of various types of permeable pavements with respect to water quality improvement and flood control. In World Environmental and Water Resources Congress: Restoring Our Natural Habitat; American Society of Civil Engineering: Reston, VA, USA, 2007; pp. 1–12. [Google Scholar]
- Yong, C.F.; McCarthy, D.T.; Deletic, A. Predicting physical clogging of porous and permeable pavements. J. Hydrol. 2013, 481, 48–55. [Google Scholar] [CrossRef]
- Chandrappa, A.K.; Biligiri, K.P. Pervious concrete as a sustainable pavement material–Research findings and future prospects: A state-of-the-art review. Constr. Build. Mater. 2016, 111, 262–274. [Google Scholar] [CrossRef]
- Bean, E.Z.; Hunt, W.F.; Bidelspach, D.A.; Smith, J.E. Evaluation of four permeable pavement sites in eastern North Carolina for runoff reduction and water quality impacts. J. Irrig. Drain. Eng. 2007, 133, 583–592. [Google Scholar] [CrossRef]
- Fassman, E.A.; Blackbourn, S. Urban runoff mitigation by a permeable pavement system over impermeable soils. J. Hydrol. Eng. 2010, 15, 475–485. [Google Scholar] [CrossRef]
- Mullaney, J.; Lucke, T. Practical review of pervious pavement designs. CLEAN–Soil Air Water 2014, 42, 111–124. [Google Scholar] [CrossRef]
- U.S. EPA (United States Environmental Protection Agency). Low Impact Development (LID): A Literature Review; EPA-841-B-00-005; U. S. Environmental Protection Agency: Washington, DC, USA, 2000.
- Construction Industry Research and Information Association (CIRIA). Sustainable Urban Drainage Systems: Design Manual for England and Wales; CIRIA: London, UK, 2000. [Google Scholar]
- Wong, T.H.F. An overview of water sensitive urban design practices in Australia. Water Pract. Tech. 2006, 1. [Google Scholar] [CrossRef]
- U.S. Green Building Council (USGBC). LEED 2009 for New Construction and Major Renovations Rating System; US Green Building Council: Washington, DC, USA, 2009. [Google Scholar]
- Architecture and Building Research Institute. Green Building Evaluation Manual: EEWH-OS; Taiwan Architecture and Building Research Institute: New Taipei City, Taiwan, 2017; pp. 29–58.
- Brown, R.A.; Borst, M. Nutrient infiltrate concentrations from three permeable pavement types. J. Environ. Manag. 2015, 164, 74–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, K.A.; Hunt, W.F.; Hathaway, J.M. Side-by-side comparison of nitrogen species removal for four types of permeable pavement and standard asphalt in eastern North Carolina. J. Hydrol. Eng. 2009, 15, 512–521. [Google Scholar] [CrossRef]
- Bean, E.Z.; Hunt, W.F.; Bidelspach, D.A. Field survey of permeable pavement surface infiltration rates. J. Irrig. Drain. Eng. 2007, 133, 249–255. [Google Scholar] [CrossRef]
- Boving, T.B.; Stolt, M.H.; Augenstern, J.; Brosnan, B. Potential for localized groundwater contamination in a porous pavement parking lot setting in Rhode Island. Environ. Geol. 2008, 55, 571–582. [Google Scholar] [CrossRef]
- Collins, K.A.; Lawrence, T.J.; Stander, E.K.; Jontos, R.J.; Kaushal, S.S.; Newcomer, T.A.; Ekberg, M.L.C. Opportunities and challenges for managing nitrogen in urban stormwater: A review and synthesis. Ecol. Eng. 2010, 36, 1507–1519. [Google Scholar] [CrossRef]
- Gilbert, J.K.; Clausen, J.C. Stormwater runoff quality and quantity from asphalt, paver, and crushed stone driveways in Connecticut. Water Res. 2006, 40, 826–832. [Google Scholar] [CrossRef] [PubMed]
- Shah, D.S.; Pitroda, J.; Bhavsar, J.J. Pervious concrete: New era for rural road pavement. IJETT 2013, 4, 3495–3499. [Google Scholar]
- Antunes, L.N.; Thives, L.P.; Ghisi, E. Potential for potable water savings in buildings by using stormwater harvested from porous pavements. Water 2016, 8, 110. [Google Scholar] [CrossRef]
- Tota-Maharaj, K.; Scholz, M.; Ahmed, T.; French, C.; Pagaling, E. The synergy of permeable pavements and geothermal heat pumps for stormwater treatment and reuse. Environ. Technol. 2010, 31, 1517–1531. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Ullate, E.; Castillo-Lopez, E.; Castro-Fresno, D.; Bayon, J.R. Analysis and contrast of different pervious pavements for management of storm-water in a parking area in Northern Spain. Water Resour. Manag. 2011, 25, 1525–1535. [Google Scholar] [CrossRef]
- Nnadi, E.O.; Newman, A.P.; Coupe, S.J.; Mbanaso, F.U. Stormwater harvesting for irrigation purposes: An investigation of chemical quality of water recycled in pervious pavement system. J. Environ. Manag. 2015, 147, 246–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Concrete in Practice-38 (CIP-38), National Ready Mix Concrete Association (NRMCA). Available online: https://www.nrmca.org/aboutconcrete/cips/38p.pdf (accessed on 17 January 2019).
- Schaefer, V.R.; Wang, K.; Suleiman, M.T.; Kevern, J.T. Mix Design Development for Pervious Concrete in Cold Weather Climates; No. Report No. 2006-01; Center for Transportation Research and Education, Iowa State University: Ames, IA, USA, 2006. [Google Scholar]
- Roseen, R.M.; Ballestero, T.P.; Houle, J.J.; Avellaneda, P.; Briggs, J.; Fowler, G.; Wildey, R. Seasonal performance variations for storm-water management systems in cold climate conditions. J. Environ. Eng. 2009, 135, 128–137. [Google Scholar] [CrossRef]
- Cipolla, S.S.; Maglionico, M.; Stojkov, I. Experimental Infiltration Tests on Existing Permeable Pavement Surfaces. CLEAN–Soil Air Water 2016, 44, 89–95. [Google Scholar] [CrossRef]
- Coleri, E.; Kayhanian, M.; Harvey, J.T.; Yang, K.; Boone, J.M. Clogging evaluation of open graded friction course pavements tested under rainfall and heavy vehicle simulators. J. Environ. Manag. 2013, 129, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Winston, R.J.; Al-Rubaei, A.M.; Blecken, G.T.; Hunt, W.F. A simple infiltration test for determination of permeable pavement maintenance needs. J. Environ. Eng. 2016, 142, 06016005. [Google Scholar] [CrossRef]
- Brattebo, B.O.; Booth, D.B. Long-term stormwater quantity and quality performance of permeable pavement systems. Water Res. 2003, 37, 4369–4376. [Google Scholar] [CrossRef]
- Yu, B.; Jiao, L.; Ni, F.; Yang, J. Long-term field performance of porous asphalt pavement in China. Road Mater. Pavement. 2015, 16, 214–226. [Google Scholar] [CrossRef]
- Boogaard, F.; Lucke, T.; van de Giesen, N.; van de Ven, F. Evaluating the infiltration performance of eight Dutch permeable pavements using a new full-scale infiltration testing method. Water 2014, 6, 2070–2083. [Google Scholar] [CrossRef]
- González-Angullo, N.; Castro, D.; Rodríguez-Hernández, J.; Davies, J.W. Runoff infiltration to permeable paving in clogged conditions. Urban Water J. 2008, 5, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Lucke, T.; Beecham, S. Field investigation of clogging in a permeable pavement system. Build. Res. Inf. 2011, 39, 603–615. [Google Scholar] [CrossRef]
- Bean, E.Z.; Hunt, W.F.; Bidelspach, D.A. Study on the surface infiltration rate of permeable pavements. In Critical Transitions in Water and Environmental Resources Management; American Society of Civil Engineering: Reston, VA, USA, 2004. [Google Scholar]
- Dierkes, C.; Kuhlmann, L.; Kandasamy, J.; Angelis, G. Pollution retention capability and maintenance of permeable pavements. In Proceedings of the Ninth International Conference on Urban Drainage (9ICUD), Portland, OR, USA, 8–13 September 2002. [Google Scholar]
- Rushton, B.T. Low-impact parking lot design reduces runoff and pollutant loads. J. Water Resour. Plan. Manag. 2001, 127, 172–179. [Google Scholar] [CrossRef]
- Walloch, C.; Brown, H.; Smith, D. Development of a new test method for determining the surface infiltration rate of permeable unit pavement systems. In Masonry; Michael, T., Ed.; American Society for Testing and Materials (ASTM) International: West Conshohocken, PA, USA, 2014. [Google Scholar]
- Li, H.; Kayhanian, M.; Harvey, J.T. Comparative field permeability measurement of permeable pavements using ASTM C1701 and NCAT permeameter methods. J. Environ. Manag. 2013, 118, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Yang, H.; Deng, Z.; He, J. Water permeability of pervious concrete is dependent on the applied pressure and testing methods. Adv. Mater. Sci. Eng. 2015. [Google Scholar] [CrossRef]
- Sandoval, G.F.; Galobardes, I.; Teixeira, R.S.; Toralles, B.M. Comparison between the falling head and the constant head permeability tests to assess the permeability coefficient of sustainable Pervious Concretes. Case Stud. Constr. Mater. 2017, 7, 317–328. [Google Scholar] [CrossRef]
- Alizadehtazi, B.; DiGiovanni, K.; Foti, R.; Morin, T.; Shetty, N.H.; Montalto, F.A.; Gurian, P.L. Comparison of observed infiltration rates of different permeable urban surfaces using a cornell sprinkle infiltrometer. J. Hydrol. Eng. 2016, 21, 06016003. [Google Scholar] [CrossRef]
- WB Nichols, P.; Lucke, T.; Dierkes, C. Comparing two methods of determining infiltration rates of permeable interlocking concrete pavers. Water 2014, 6, 2353–2366. [Google Scholar] [CrossRef]
- Drake, J.; Bradford, A.; Van Seters, T. Stormwater quality of spring–summer-fall effluent from three partial-infiltration permeable pavement systems and conventional asphalt pavement. J. Environ. Manag. 2014, 139, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.; Earley, K.; Lia, J. Potential application of ASTM C1701 for evaluating surface infiltration of permeable interlocking concrete pavements. In Pervious Concrete; Heather, B., Offenberg Matthew, O., Eds.; American Society for Testing and Materials (ASTM) International: West Conshohocken, PA, USA, 2012. [Google Scholar]
- Liu, C.M.; Chen, J.W.; Tsai, J.H.; Lin, W.S.; Yen, M.T.; Chen, T.H. Experimental studies of the dilution of vehicle exhaust pollutants by environment-protecting pervious pavement. J. Air Waste Manag. Assoc. 2012, 62, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.F.; Wang, S.F.; Chen, C.P.; Hsieh, H.L.; Chen, J.W.; Chen, T.H.; Chao, W.L. Microbial community structure and activity under various pervious pavements. J. Environ. Eng. 2013, 140, 04013012. [Google Scholar] [CrossRef]
- Chen, J.W.; Ding Tai Co., Ltd., Shulin, New Taipei City, Taiwan. Personal communication, 2017.
- Chen, J.W.; Ding Tai Co., Ltd., Shulin, New Taipei City, Taiwan. Personal communication, 2018.
- Cooley, L.A., Jr. Permeability of superpave mixtures: Evaluation of field permeameters. In NCAT Report 99-1; National Center for Asphalt Technology (NCAT): Auburn, AL, USA, 1999. [Google Scholar]
- American Society for Testing and Materials (ASTM). C1701/C1701M Standard Test Method for Infiltration Rate of in Place Pervious Concrete; ASTM: West Conshohocken, PA, USA, 2017. [Google Scholar]
- American Society for Testing and Materials (ASTM). C1781/C1781M Standard Test Method for Surface Infiltration Rate of Permeable Unit Paving; ASTM: West Conshohocken, PA, USA, 2015. [Google Scholar]
- Valeo, C.; Gupta, R. Determining surface infiltration rate of permeable pavements with digital imaging. Water 2018, 10, 133. [Google Scholar] [CrossRef]
Method | NCAT | ASTM 1 | Ratio (NCAT/ASTM) | |||
Pavement | JW | PC | JW | PC | JW | PC |
Mean | 4.66 | 4.74 | 0.93 | 0.75 | 4.99 | 6.36 |
Max | 6.73 | 5.90 | 1.13 | 1.11 | 5.96 | 5.32 |
Min | 3.52 | 3.00 | 0.79 | 0.56 | 4.48 | 5.36 |
Stdev | 0.68 | 0.65 | 0.08 | 0.14 | 8.10 | 4.65 |
Measurement | 10 | 10 | 7 | 7 | ||
Method | SF-4 | SF-9 | Ratio (SF-4/SF-9) | |||
Pavement | JW | PC | JW | PC | JW | PC |
Mean | 6.15 | 4.02 | 1.07 | 0.99 | 5.74 | 4.08 |
Max | 6.88 | 5.95 | 1.30 | 1.16 | 5.27 | 5.11 |
Min | 5.16 | 2.90 | 0.93 | 0.86 | 5.54 | 3.38 |
Stdev | 0.49 | 0.92 | 0.08 | 0.08 | 5.73 | 11.03 |
Measurement | 6 | 6 | 6 | 6 |
Methods Compared | Pavement Type | R2 | Coefficient α * | Standard Error |
---|---|---|---|---|
NCAT vs SF-4 | JW&PC | 0.952 | 1.083 | 0.109 |
NCAT vs SF-4 | JW | 0.992 | 1.311 | 0.052 |
NCAT vs SF-4 | PC | 0.981 | 0.856 | 0.053 |
ASTM vs SF-9 | JW&PC | 0.990 | 1.209 | 0.053 |
ASTM vs SF-9 | JW | 0.994 | 1.142 | 0.040 |
ASTM vs SF-9 | PC | 0.985 | 1.298 | 0.071 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.-M.; Chen, J.-W.; Chen, T.-H.; Lecher, T.; Davidson, P.C. Measurement of Permeability and Comparison of Pavements. Water 2019, 11, 444. https://doi.org/10.3390/w11030444
Chen L-M, Chen J-W, Chen T-H, Lecher T, Davidson PC. Measurement of Permeability and Comparison of Pavements. Water. 2019; 11(3):444. https://doi.org/10.3390/w11030444
Chicago/Turabian StyleChen, Lu-Ming, Jui-Wen Chen, Ting-Hao Chen, Timothy Lecher, and Paul C. Davidson. 2019. "Measurement of Permeability and Comparison of Pavements" Water 11, no. 3: 444. https://doi.org/10.3390/w11030444