A Spatial Analysis to Define Data Requirements for Hydrological and Water Quality Models in Data-Limited Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Requirements for Modelling Hydrology and Water Quality
2.3. Spatial Analysis for Building a Geodatabase
2.4. Field Data
2.5. Riverine Nutrient Load Export
3. Results and Discussion
3.1. Monitoring Streamflow and Water Quality
3.2. Setting Inputs for Hydrological and Water Quality Models
3.3. Estimating Riverine Nutrient Loads
3.4. Improving Monitoring and Load Assessment
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Name | Source | Description | Format |
---|---|---|---|
Digital Terrain Model (DTM) | Puglia Region (sit.puglia.it) | The provided DTM has a spatial resolution of 8 m | asc |
Administrative limit | Istat (istat.it) | The cartography concerns the delimitation of Italian regions, provinces, and municipalities | shp |
Land Use map | Puglia Region (sit.puglia.it) | The map complies with the standard defined at European level with the specifications of the CORINE Land Cover project (IV level) | shp |
Soil map and soil characteristics | Puglia Region [26] Joint Research Centre-European Soil DAta Centre (JRC-ESDAC) (esdac.jrc.ec.europa.eu) | The two database provide soil map, soil data, and information at Regional and European level, respectively | asc shp |
Hydro-geomorphological map | Puglia Region (sit.puglia.it) | The map provides information on the hydro-geomorphology (e.g., river network, caves, springs, sinkholes) | shp |
Regional Technical map (CTR) | Puglia Region (sit.puglia.it) | The map provides information on the topography (e.g., river network, channel, level curves) | shp |
Regional Territorial Landscape Plan (PPTR) | Puglia Region (sit.puglia.it) | The Plan concerns the protection of the territory and the landscape. It provides map of landscape elements to be protected (e.g., floodplain area, forests, pasture, Site of Community Importance) | shp |
Cadastre of caves and natural cavities | Puglia Region (sit.puglia.it) | The Cadastre provides information on the location of karst elements (i.e., caves, and sinkholes) | shp |
Groundwater monitoring results database | Puglia Region (sit.puglia.it) | The database provides information on the groundwater quality based on the monitoring activities performed between 2006–2016 | shp xls |
Surface water monitoring results database | Puglia Region (sit.puglia.it) Arpa Puglia (arpa.puglia.it) | The database provides information on the surface water quality based on the monitoring activities performed between 2011–2018 | shp xls |
Urban wastewater treatment plant discharges monitoring results database | Arpa Puglia (arpa.puglia.it) | The database provides information on the treated wastewater quality based on the monitoring activities performed between 2012- June 2018. Water samples are taken and analysed once a month | xls |
Urban wastewater treatment plant discharged volumes | Acquedotto Pugliese (AQP) | The information concerns the mean annual water volumes discharged into the river system by the wastewater treatment plant (WWTPs) | xls |
Meteorological data | Civil Protection Service-Puglia Region (protezionecivile.puglia.it) Assocodipuglia Consortium (agrometeopuglia.it) | Daily data (precipitation, temperature, solar radiation, wind speed and direction, and humidity) were acquired | xls |
National Agricultural Census (2010) | Istat (dati-censimentoagricoltura.istat.it) | The data warehouse provides information on animal farming and crop (yield and surface) at municipal scale | xls |
Appendix B
Field Surveys Model | |
Date: _________________ | |
Interviewee’s name: __________________ | |
Municipality: __________________ | |
Crop: _________________ |
ID | Name | Quantity (kg ha−1) | Application Month |
---|---|---|---|
1 | |||
2 | |||
3 | |||
4 | |||
5 | |||
6 |
ID | Type | Amount of Water for Each Irrigation (m3ha−1) | Months and Frequency |
---|---|---|---|
1 | |||
2 | |||
3 | |||
4 | |||
5 | |||
6 |
Yield (kg ha−1) | Harvesting Period |
---|---|
References
- Abdelwahab, O.M.M.; Bingner, R.L.; Milillo, F.; Gentile, F. Effectiveness of alternative management scenarios on the sediment load in a Mediterranean agricultural watershed. J. Agric. Eng. 2014, 45, 125–136. [Google Scholar] [CrossRef]
- Abouabdillah, A.; White, M.; Arnold, J.G.; De Girolamo, A.M.; Oueslati, O.; Maataoui, A.; Lo Porto, A. Evaluation of soil and water conservation measures in a semi-arid river basin in Tunisia using SWAT. Soil Use Manag. 2014, 30, 539–549. [Google Scholar] [CrossRef]
- Abdelwahab, O.M.M.; Bingner, R.L.; Milillo, F.; Gentile, F. Evaluation of alternative management practices with the AnnAGNPS model in the Carapelle watershed. Soil Sci. 2016, 181, 293–305. [Google Scholar] [CrossRef]
- De Girolamo, A.M.; Barca, E.; Pappagallo, G.; Lo Porto, A. Simulating ecologically relevant hydrological indicators in a temporary river system. Agric. Water Manag. 2017, 180, 194–204. [Google Scholar] [CrossRef]
- De Girolamo, A.M.; Bouroui, F.; Buffagni, A.; Pappagallo, G.; Lo Porto, A. Hydrology under climate change in a temporary river system: Potential impact on water balance and flow regime. River River Res. Appl. 2017, 33, 1219–1232. [Google Scholar] [CrossRef]
- Ricci, G.F.; De Girolamo, A.M.; Abdelwahab, O.M.; Gentile, F. Identifying sediment source areas in a Mediterranean watershed using the SWAT model. Land Degrad. Dev. 2018, 29, 1233–1248. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment—Part 1: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Theurer, F.D.; Cronshey, R.G. AnnAGNPS-Reach Routing Processes. In Proceedings of the First Federal Interagency Hydrologic Modeling Conference, Las Vegas, NV, USA, 19–23 April 1998. [Google Scholar]
- De Girolamo, A.M.; Lo Porto, A. Land use scenario development as a tool for watershed management within the Rio Mannu Basin. Land Use Policy 2012, 29, 691–701. [Google Scholar] [CrossRef]
- Bisantino, T.; Bingner, R.; Chouaib, W.; Gentile, F.; Trisorio Liuzzi, G. Estimation of runoff, peak discharge and sediment load at the event scale in a medium-size Mediterranean watershed using the AnnAGNPS model. Land Degrad. Dev. 2015, 26, 340–355. [Google Scholar] [CrossRef]
- Oueslati, O.; De Girolamo, A.M.; Abouabdillah, A.; Kjeldsen, T.R.; Lo Porto, A. Classifying the flow regimes of Mediterranean streams using multi-variate analysis. Hydrol. Process. 2015, 29, 4666–4682. [Google Scholar] [CrossRef]
- Refsgaard, J.C. Parameterisation, calibration and validation of distributed hydrological models. J. Hydrol. 1997, 198, 69–97. [Google Scholar] [CrossRef]
- Aquilino, M.; Novelli, A.; Tarantino, E.; Iacobellis, V.; Gentile, F. Evaluating the potential of GeoEye data in retrieving LAI at watershed scale. Proc. SPIE Int. Soc. Opt. Eng. 2014, 92392B. [Google Scholar] [CrossRef]
- Abdelwahab, O.M.M.; Bisantino, T.; Milillo, F.; Gentile, F. Runoff and sediment yield modeling in a medium-size Mediterranean watershed. J. Agric. Eng. 2013, 44, 31–40. [Google Scholar] [CrossRef]
- De Girolamo, A.M.; Lo Porto, A.; Pappagallo, G.; Tzoraki, O.; Gallart, F. The hydrological status concept: Application at a temporary river (Candelaro, Italy). River Res. Appl. 2015, 31, 892–903. [Google Scholar] [CrossRef]
- De Girolamo, A.M.; D’Ambrosio, E.; Pappagallo, G.; Rulli, M.C.; Lo Porto, A. Nitrate concentrations and source identification in a Mediterranean river system. Rendiconti Lincei 2018, 28, 291–301. [Google Scholar] [CrossRef]
- Engel, B.; Storm, D.; White, M.; Arnold, J.; Arabi, M. A hydrologic/water quality model application protocol. JAWRA 2007, 43, 1223–1236. [Google Scholar]
- Guerricchio, A.; Simeone, V. Caratteri geologico–strutturali dell’area di Taranto e potenziali implicazioni sulla genesi del Mar Piccolo di Taranto (Puglia). In Proceedings of the Tecniche per la Difesa Dall’inquinamento–34° Corso di Aggiornamento; Edibio: Cosenza, Italy, 2013; pp. 219–235. ISBN 978-88-97181-24-8. [Google Scholar]
- Zuffianò, L.E.; Basso, A.; Casarano, D.; Dragone, V.; Limoni, P.P.; Romanazzi, A.; Santaloia, F.; Polemio, M. Coastal hydrogeological system of Mar Piccolo (Taranto, Italy). Environ. Sci. Pollut. Res. 2016, 23, 12502–12514. [Google Scholar] [CrossRef]
- Cardellicchio, N.; Buccolieri, A.; Giandomenico, S.; Lopez, L.; Pizzulli, F.; Spada, L. Organic pollutants (PAHs, PCBs) in sediments from the Mar Piccolo in Taranto (Ionian Sea, Southern Italy). Mar. Pollut. Bull. 2007, 55, 451–458. [Google Scholar] [CrossRef]
- Caroppo, C.; Giordano, L.; Palmieri, N.; Bellio, G.; Bisci, A.P.; Portacci, G.; Sclafani, P.; Hopkins, T.S. Progress towards sustainable mussel aquaculture in Mar Piccolo, Italy. Ecol. Soc. 2012, 17, 1–10. [Google Scholar] [CrossRef]
- Ielpo, P.; Mangia, C.; Marra, G.P.; Comite, V.; Rizza, U.; Uricchio, V.F.; Fermo, P. Outdoor spatial distribution and indoor levels of NO2 and SO2 in a high environmental risk site of the South Italy. Sci. Total. Environ. 2019, 648, 787–797. [Google Scholar] [CrossRef]
- Tursi, A.; Corbelli, V.; Cipriano, G.; Capasso, G.; Velardo, R.; Chimienti, G. Mega-litter and remediation: The case of Mar Piccolo of Taranto (Ionian Sea). Rend. Fis. Acc. Lincei 2018, 29, 817–824. [Google Scholar] [CrossRef]
- Lavarra, P.; Angelini, P.; Augello, R.; Bianco, P.M.; Capogrossi, R.; Gennaio, R.; La Ghezza, V.; Marrese, M. Il Sistema Carta Della Natura Della Regione Puglia; ISPRA: Roma, Italy, 2014; pp. 1–122. ISBN 978-88-448-0655-2.
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Jha, M.K. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- ISTAT. Sesto Censimento Generale dell’Agricoltura. Istituto Nazionale di Statistica. Available online: http://censimentoagricoltura.istat.it/index.php?id=73 (accessed on 30 June 2017).
- De Girolamo, A.M.; Balestrini, R.; D’Ambrosio, E.; Pappagallo, G.; Soana, E.; Lo Porto, A. Antropogenic input of nitrogen and riverine export from a Mediterranean catchment. The Celone, a temporary river case study. Agric. Water Manag. 2017, 187, 190–199. [Google Scholar] [CrossRef]
- D’Ambrosio, E.; De Girolamo, A.M.; Rulli, M.C. Coupling the water footprint accounting of crops and in-stream monitoring activities at catchment scale. MethodsX 2018, 5, 1221–1240. [Google Scholar] [CrossRef] [PubMed]
- Perelli, M.; Pimpini, F. Il Nuovo Manuale Di Concimazione, 2nd ed.; Arvan: Venezia, Italy, 2003; 446p, ISBN 888780110X. [Google Scholar]
- Fulhage, C.D.; Pfost, D.L.; Schuster, D.L. Fertilizer Nutrients in Livestock and Poultry Manure. Available online: https://mospace.umsystem.edu/xmlui/bitstream/handle/10355/50643/eq0351-2002.pdf?sequence=1&isAllowed=y (accessed on 10 January 2018).
- Regione Puglia. Progetto Acla 2—Studio per La Caratterizzazione Agronomica Della Regione PUGLIA E La Classificazione Del Territorio in Funzione Della Potenzialità Produttiva. Progetto ACLA 2. P.O.P; Puglia 94-99; Regione Puglia: Bari, Italy, 2001. [Google Scholar]
- Joint Research Centre—European Soil Data Centre (ESDAC). Available online: https://esdac.jrc.ec.europa.eu/resource-type/datasets (accessed on 30 June 2017).
- USDA Natural Resources Conservation Service. Soil Water Characteristics. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/national/water/manage/drainage/?cid=stelprdb1045310 (accessed on 30 June 2017).
- Van Liew, M.W.; Arnold, J.G.; Garbrecht, J.D. Hydrologic simulation on agricultural watersheds: Choosing between two models. Trans. ASAE 2003, 46, 1539–1551. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASAE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Gentile, F.; Bisantino, T.; Corbino, R.; Milillo, F.; Romano, G.; Trisorio Liuzzi, G. Monitoring and analysis of suspended sediment transport dynamics in the Carapelle torrent (Southern Italy). Catena 2010, 80, 1–8. [Google Scholar] [CrossRef]
- ARPA Puglia. Monitoraggio Degli Impianti Di Trattamento Delle Acque Reflue Urbane—Depuratori. Available online: http://www.arpa.puglia.it/web/guest/depuratori (accessed on 31 October 2018).
- APAT-IRSA/CNR. Metodi Analitici per Le Acque. Rapporti 29/2003; APAT: Rome, Italy, 2004; 1153p, ISBN 88-448-0083-7. [Google Scholar]
- Chow, V.T. Open Channel Hydraulics; McGraw-Hill: New York, NY, USA, 1959; 680p. [Google Scholar]
- Turnipseed, D.P.; Sauer, V.B. Techniques and Methods 3-A8. In Discharge Measurements at Gaging Stations; U.S. Geological Survey Techniques and Methods: Reston, VA, USA, 2010; pp. 1–87. ISBN 978-1-4113-2969-0. [Google Scholar]
- Tan, K.S.; Fox, D.; Etchells, T. GUMLEAF: Generator for Uncertainty Measures and Load Estimates Using Alternatie Formulae; Australia Centre for Environmetrics—The University of Melbourne: Melbourne, Australia, 2005; pp. 1–36. [Google Scholar]
- Quilbé, R.; Rousseau, A.N.; Duchemin, M.; Poulin, A.; Gangbazo, G.; Villeneuve, J.P. Selecting a calculation method to estimate sediment and nutrient loads in streams: Application to the Beaurivage River (Québec, Canada). J. Hydrol. 2006, 326, 295–310. [Google Scholar] [CrossRef]
- eWater Cooperative Research Centre. Water Quality Analyser v2.1.1.4; eWater Cooperative Research Centre: Canberra, Australia, 2012. [Google Scholar]
- Runkel, R.L.; Crawford, C.G.; Cohn, T.A. Load Estimator (LOADEST): A FORTRAN Program for Estimating Constituent Loads in Streams and Rivers: U.S. Geological Survey Techniques and Methods Book 4, Chapter A5; U.S. Geological Survey: Reston, VA, USA, 2004; pp. 1–69. Available online: https://doi.org/10.3133/tm4A5 (accessed on 1 March 2017).
- Marsh, N.; Steven, A.; Tennakoon, S.; Arene, S.; Farthing, B.; Fox, D. Loads Tool v1.0.0b; Queensland Environmental Protection Agency: Indooroopilly, Australia, 2006.
- Huggins, R.; Wallace, R.; Orr, D.N.; Thomson, B.; Smith, R.A.; Taylor, C.; King, O.; Gardiner, R.; Wallace, S.; Ferguson, B.; et al. Total Suspended Solids, Nutrient and Pesticide Loads (2015–2016) for Rivers that Discharge to the Great Barrier Reef—Great Barrier Reef Catchment Loads Monitoring Program; Department of Environment and Science: Brisbane, Australia, 2017; pp. 1–126.
- Thomson, B.; Rogers, B.; Dunlop, J.; Ferguson, B.; Marsh, N.; Vardy, S.; Warne, M. A Framework for Selecting the Most Appropriate Load Estimation Method for Events Based on Sampling Regime; Water Quality and Investigations, Environmental Monitoring and Assessment Science, Department of Science, Information Technology, Innovation and the Arts: Brisbane, Australia, 2012; pp. 1–56. ISBN 978-1-7423-0993.
- Llasat, M.C.; Siccardi, F. A reflection about the social and techno-logical aspects in flood risk management–the case of the Italian Civil Protection. Nat. Hazards Earth Syst. Sci. 2010, 10, 109–119. [Google Scholar] [CrossRef]
- D’Ambrosio, E.; De Girolamo, A.M.; Barca, E.; Ielpo, P.; Rulli, M. Characterising the hydrological regime of an ungauged temporary river system: A case study. Environ. Sci. Pollut. Res. 2017, 24, 13950–13966. [Google Scholar] [CrossRef]
- D’Ambrosio, E.; De Girolamo, A.M.; Rulli, M.C. Assessing sustainability of agriculture through water footprint analysis and in-stream monitoring activities. J. Clean. Prod. 2018, 200, 454–470. [Google Scholar] [CrossRef]
- European Environment Agency. Nutrients in Freshwater; European Environment Agency: Copenhagen, Denmark, 2015; pp. 1–35. [Google Scholar]
- Regione Puglia. Risorse Idriche—Corpi Idrici Sotterranei. Available online: http://www.sit.puglia.it/portal/portale_cis/Corpi%20Idrici%20Sotterranei/Dati%20del%20Monitoraggio (accessed on 15 January 2019).
- Regione Puglia. Carte Tecniche e Tematiche. Available online: http://www.sit.puglia.it (accessed on 30 June 2017).
- Regione Puglia. Risorse Idriche. Available online: http://www.sit.puglia.it (accessed on 30 June 2017).
- Regione Puglia. Civil Protection Service. Available online: http://www.protezionecivile.puglia.it/centro-funzionale/analisielaborazione-dati (accessed on 1 August 2018).
- Assocodipuglia. Available online: www.agrometeopuglia.it (accessed on 11 July 2018).
- De Girolamo, A.M.; Di Pillo, R.; Lo Porto, A.; Todisco, M.; Barca, E. Identifying a reliable method for estimating suspended sediment load in a temporary river system. Catena 2018, 165, 442–453. [Google Scholar] [CrossRef]
- Bouraoui, F.; Grizzetti, B.; Aloe, A. Nutrient Discharge from Rivers to Seas for Year 2000; European Commission—Joint Research Center: Varese, Italy, 2009; pp. 1–68. [Google Scholar] [CrossRef]
- Pärn, J.; Pinay, G.; Mander, Ü. Indicators of nutrients transport from agricultural catchments under temperate climate: A review. Ecol. Indic. 2012, 22, 4–15. [Google Scholar] [CrossRef]
- Kroon, F.J.; Kuhnert, P.M.; Henderson, B.L.; Wilkinson, S.N.; Kinsey-Henderson, A.; Abbott, B.; Brodie, J.E.; Turner, R.D.R. River loads of suspended solids, nitrogen, phosphorus and herbicides delivered to the Great Barrier Reef lagoon. Mar. Pollut. Bull. 2012, 65, 167–181. [Google Scholar] [CrossRef] [PubMed]
- Hatfield, J.L.; Follett, R.F. Nitrogen in the Environment: Sources, Problems and Management; Academic Press Elsevier: London, UK, 2008; p. 702. ISBN 9780080537566. [Google Scholar]
- Bartoli, M.; Racchetti, E.; Delconte, C.A.; Sacchi, E.; Soana, E.; Laini, A.; Longhi, D.; Viaroli, P. Nitrogen balance and fate in a heavily impacted watershed (Oglio River, Northern Italy): In quest of the missing sources and sinks. Biogeosciences 2012, 9, 361–373. [Google Scholar] [CrossRef]
- De Girolamo, A.M.; Calabrese, A.; Pappagallo, G.; Santese, G.; Lo Porto, A. Impact of anthropogenic activities on a temporary river. Fresenius Environ. Bull. 2012, 21, 3278–3286. [Google Scholar]
- Mainstone, C.P.; Parr, W. Phosphorus in rivers—ecology and management. Sci. Total Environ. 2002, 282, 25–47. [Google Scholar] [CrossRef]
- Abdelwahab, O.M.M.; Ricci, G.F.; De Girolamo, A.M.; Gentile, F. Modelling soil erosion in a Mediterranean watershed: Comparison between SWAT and AnnAGNPS models. Environ. Res. 2018, 166, 363–376. [Google Scholar] [CrossRef]
- Audet, J.; Martinsen, L.; Hasler, B.; De Jonge, H.; Karydi, E.; Ovesen, N.B.; Kronvang, B. Comparison of sampling methodologies for nutrient monitoring in streams: Uncertainties, costs and implications for mitigation. Hydrol. Earth Syst. Sci. 2014, 18, 4721–4731. [Google Scholar] [CrossRef]
- Hawdon, A.A.; Keen, R.K.; Kemei, J.K.; Vleeshouwer, J.M.; Wallace, J.S. Design and Application of Automated Flood Monitoring Systems in the Wet Tropics. CSIRO Land and Water Science Report 49/07; CSIRO Land and Water Davies Laboratory: Townsville, Australia, 2007; pp. 1–27. [Google Scholar]
Input | Description | Format |
---|---|---|
Digital Terrain Model | The Digital Terrain Model (DTM) provided by the Puglia Region was used [53]. | grid |
River network | The stream features provided by the Hydro-Geomorphological and Regional Technical maps [53] were cross-checked and integrated with information obtained by means of field inspections. The actual river network representation was obtained with particular reference to the interaction between the Salina Grande and the Canale d’Aiedda streams. | shp |
Mask | Map of areas contributing to surface runoff. Areas with outcropping limestone, caves, and sinkholes (Figure 7b) were identified throughout the basin, including with information from Zuffianò et al. [19]. | grid |
Land use map | The land use map provided by the Puglia Region [53] was reclassified by considering the crop data provided on a municipal scale by the National Agricultural Census [26]. In particular, arable land was reclassified and divided between durum wheat, set-aside land, and herbage. Thus, a detailed land cover map was obtained, and 23 soil use classes were identified throughout the basin (Figure 7a). | grid |
Soil map | The 20 polygonal features of the soil map provided by the Puglia Region [53] were further divided, taking into account the differences between the percentages of coarse content provided by JRC- ESDAC [32]. Hence, 24 soil types were identified throughout the basin. | grid |
Soil database | The soil information provided by the Puglia Region for each soil type (e.g., number of soil layers, soil layer depth, texture, organic carbon content) [31] was integrated with information provided by JRC-ESDAC (e.g., rock fragment content) [32] and physical parameters computed with the software Soil Water Characteristics (e.g., bulk density of each soil layer, available water capacity, saturated hydraulic conductivity) [33]. | mdb |
Point sources | Groundwater database [54] and urban wastewater treatment plant discharge databases [37] were used and integrated with the results of the surface water sampling campaign (points W2, W3, S3) in order to obtain information on the specific point sources (springs and WWTP discharges) present in the study area. The mean annual volume of treated sewage was provided for each plant by the plant manager (Acquedotto Pugliese, AQP), and a new database was built (Table 2). | mdb |
Meteorological data | Daily data (precipitation, temperature, solar radiation, wind speed and direction, humidity) were acquired from the Civil Protection Service—Puglia Region (13 meteorological stations) [55] and Assocodipuglia Consortium (5 meteorological stations) [56]. The coordinates were related to climatic data, and a new database was built. | mdb |
Agricultural practices | A database was implemented including for each crop (land use) agricultural practices, such as tillage operations (type and date) as well as fertilizer and irrigation applications (i.e., timing, amount, and type). Grazing was also considered on pasture land. Interviews with farmers and agricultural advisors were also used (Appendix B). | mdb |
Code | Name | Description | Q (m3 day−1) | N-NO3 (kg day−1) | N-NH4 (kg day−1) | P-PO4 (kg day−1) |
---|---|---|---|---|---|---|
S1 | Chianca | Spring | 172.8 | 2.5 | 0.9 | 0 |
S2 | Tre Fontane | Spring | 86.4 | 0.8 | 0.0 | - |
S3 | Riso | Spring | 8218.7 | 50.5 | 0.9 | 0.2 |
W1 | Montemesola | WWTP discharge | 743.0 | 3.6 | 6.9 | 0.3 |
W2 | Monteiasi | WWTP discharge | 6444.0 | 32.8 | 44.5 | 3.5 |
W3 | San Giorgio Ionico | WWTP discharge | 4182.0 | 16.0 | 34.9 | 0.7 |
W4 | Faggiano | WWTP discharge | 516.0 | 4.0 | 2.6 | 0.5 |
W5 | Pulsano—Leporano | WWTP discharge | 2016.0 | 0.7 | 21.6 | 11.3 |
Month | N-NO3 Load (t) | |||||||
---|---|---|---|---|---|---|---|---|
Section A | Section B | |||||||
Method 1 | Method 2 | Method 3 | CV | Method 1 | Method 2 | Method 3 | CV | |
August 2017 | 0.001 | 0.001 | 0.001 | 1.7% | 0.357 | 0.358 | 0.362 | 0.7% |
September 2017 | 0.112 | 0.110 | 0.109 | 1.2% | 0.110 | 0.113 | 0.100 | 6.3% |
October 2017 | 0.325 | 0.327 | 0.328 | 0.5% | 0.291 | 0.297 | 0.295 | 0.9% |
November 2017 | 0.211 | 0.220 | 0.192 | 6.9% | 0.647 | 0.689 | 0.675 | 3.2% |
December 2017 | 0.493 | 0.500 | 0.417 | 9.8% | 0.966 | 0.961 | 0.903 | 3.7% |
January 2018 | 0.683 | 0.675 | 0.724 | 3.7% | 1.904 | 1.899 | 1.962 | 1.8% |
February 2018 | 1.194 | 1.206 | 1.169 | 1.6% | 2.436 | 2.435 | 2.453 | 0.4% |
March 2018 | 1.985 | 2.024 | 1.309 | 22.7% | 3.505 | 3.503 | 1.902 | 31.1% |
April 2018 | 4.237 | 4.169 | 5.116 | 11.7% | 8.567 | 8.590 | 11.135 | 15.7% |
May 2018 | 1.312 | 1.312 | 1.510 | 8.3% | 4.402 | 4.475 | 3.368 | 15.2% |
June 2018 | 1.303 | 1.306 | 0.793 | 26.0% | 1.995 | 1.990 | 2.089 | 2.8% |
July 2018 | 2.573 | 2.613 | 2.967 | 8.0% | 1.953 | 1.972 | 1.956 | 0.5% |
Month | P-PO4 Load (t) | |||||||
---|---|---|---|---|---|---|---|---|
Section A | Section B | |||||||
Method 1 | Method 2 | Method 3 | CV | Method 1 | Method 2 | Method 3 | CV | |
August 2017 | 0.037 | 0.033 | 0.042 | 11.6% | 0.198 | 0.198 | 0.193 | 1.3% |
September 2017 | 0.023 | 0.023 | 0.025 | 5.0% | 0.174 | 0.175 | 0.176 | 0.6% |
October 2017 | 0.016 | 0.016 | 0.016 | 0.7% | 0.029 | 0.028 | 0.029 | 2.4% |
November 2017 | 0.014 | 0.015 | 0.011 | 15.2% | 0.054 | 0.050 | 0.028 | 31.0% |
December 2017 | 0.068 | 0.069 | 0.074 | 4.1% | 0.188 | 0.186 | 0.206 | 5.5% |
January 2018 | 0.084 | 0.083 | 0.083 | 0.8% | 0.239 | 0.238 | 0.229 | 2.4% |
February 2018 | 0.065 | 0.066 | 0.068 | 1.7% | 0.118 | 0.118 | 0.119 | 0.5% |
March 2018 | 0.033 | 0.033 | 0.014 | 40.0% | 0.044 | 0.044 | 0.027 | 25.8% |
April 2018 | 0.046 | 0.045 | 0.061 | 17.4% | 0.095 | 0.095 | 0.103 | 4.8% |
May 2018 | 0.014 | 0.014 | 0.007 | 34.8% | 0.204 | 0.202 | 0.174 | 8.7% |
June 2018 | 0.020 | 0.020 | 0.025 | 13.0% | 0.150 | 0.150 | 0.176 | 9.4% |
July 2018 | 0.089 | 0.090 | 0.097 | 4.6% | 0.135 | 0.136 | 0.132 | 1.9% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Ambrosio, E.; De Girolamo, A.M.; Spanò, M.; Corbelli, V.; Capasso, G.; Morea, M.; Velardo, R.; Abdelwahab, O.M.M.; Lonigro, A.; Milillo, F.; et al. A Spatial Analysis to Define Data Requirements for Hydrological and Water Quality Models in Data-Limited Regions. Water 2019, 11, 267. https://doi.org/10.3390/w11020267
D’Ambrosio E, De Girolamo AM, Spanò M, Corbelli V, Capasso G, Morea M, Velardo R, Abdelwahab OMM, Lonigro A, Milillo F, et al. A Spatial Analysis to Define Data Requirements for Hydrological and Water Quality Models in Data-Limited Regions. Water. 2019; 11(2):267. https://doi.org/10.3390/w11020267
Chicago/Turabian StyleD’Ambrosio, Ersilia, Anna Maria De Girolamo, Marinella Spanò, Vera Corbelli, Gennaro Capasso, Massimo Morea, Raffaele Velardo, Ossama M.M. Abdelwahab, Antonio Lonigro, Fabio Milillo, and et al. 2019. "A Spatial Analysis to Define Data Requirements for Hydrological and Water Quality Models in Data-Limited Regions" Water 11, no. 2: 267. https://doi.org/10.3390/w11020267
APA StyleD’Ambrosio, E., De Girolamo, A. M., Spanò, M., Corbelli, V., Capasso, G., Morea, M., Velardo, R., Abdelwahab, O. M. M., Lonigro, A., Milillo, F., Ricci, G. F., Romano, G., Calabrese, A., Casale, B., Mauro, R., Pappagallo, G., & Gentile, F. (2019). A Spatial Analysis to Define Data Requirements for Hydrological and Water Quality Models in Data-Limited Regions. Water, 11(2), 267. https://doi.org/10.3390/w11020267