Exploring Drought Conditions in the Three River Headwaters Region from 2002 to 2011 Using Multiple Drought Indices
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. In Situ Reference Data
2.2.2. GIMMS AVHRR NDVI
2.2.3. CHIRPS Precipitation
2.2.4. MODLT1M Temperature
2.2.5. AMSR-E Soil Moisture
2.3. Methods
2.3.1. In Situ Drought Indices
Standardized Precipitation Index (SPI)
Standardized Precipitation Evapotranspiration Index (SPEI)
Standardized Non-Parametric Index (SNPI)
2.3.2. Single CI-Based Drought Indices
2.3.3. Combined Drought Indices
3. Results
3.1. Combined Drought Indices
3.2. Drought Patterns
3.2.1. Monthly Maps
3.2.2. Year-to Year Maps
3.3. Correlation Analysis
3.3.1. Monthly Temporal Comparisons
3.3.2. Monthly Spatial Comparisons
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hagman, G. Prevention Better than Cure: Report on Human and Natural Disasters in the Third World; Swedish Red Cross: Stockholm, Sweden, 1984. [Google Scholar]
- Svoboda, M.; LeComte, D.; Hayers, M.; Heim, R.; Gleason, K.; Angel, J.; Rippey, B.; Tinker, R.; Palecki, M.; Stooksbury, D.; et al. The Drought Monitor. Bull. Am. Meteorol. Soc. 2002, 83, 1181–1190. [Google Scholar] [CrossRef]
- Huang, J.; Zhai, J.; Jiang, T.; Wang, Y.; Li, X.; Wang, R.; Xiong, M.; Su, B.; Fischer, T. Analysis of future drought characteristics in china using the regional climate model CCLM. Clim. Dyn. 2018, 50, 507. [Google Scholar] [CrossRef]
- Keyantash, J.; Dracup, J.A. The quantification of drought: An evaluation of drought indices. Bull. Am. Meteorol. Soc. 2002, 83, 1167–1180. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 201–206. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to timescales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993. [Google Scholar]
- Gu, L.; Chen, J.; Xu, C.Y.; Wang, H.M. Synthetic Impacts of Internal Climate Variability and Anthropogenic Change on Future Meteorological Droughts over China. Water 2018, 10, 1702. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; López-Moreno, J.I. The influence of atmospheric circulation at different spatial scales on winter drought variability through a semi-arid climatic gradient in northeast Spain. Int. J. Climatol. 2010, 26, 1427–1453. [Google Scholar] [CrossRef]
- Rao, A.R.; Voeller, T.L. Development and testing of drought indicators. Water Resour. Manag. 1997, 11, 119–136. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, Y.; Ma, X.Y.; Ren, L.L.; Singh, V.P. Drought Analysis in the Yellow River Basin Based on a Short-Scalar Palmer Drought Severity Index. Water 2018, 10, 1526. [Google Scholar] [CrossRef]
- Guttman, N.B. Accepting the standardized precipitation index: A calculation algorithm. J. Am. Water Resour. Assoc. 1999, 35, 311–322. [Google Scholar] [CrossRef]
- Zhang, A.Z.; Jia, G.S. Monitoring meteorological drought in semiarid regions using multi-input microwave remote sensing data. Remote Sens. Environ. 2013, 134, 12–23. [Google Scholar] [CrossRef]
- Zhang, L.; Jiao, W.; Zhang, H.; Huang, C.; Tong, Q. Studying drought phenomena in the continental United States in 2011 and 2012 using various drought indices. Remote Sens. Environ. 2017, 190, 96–106. [Google Scholar] [CrossRef]
- Xu, P.; Zhou, T.; Zhao, X.; Luo, H.; Gao, S.; Li, Z.; Cao, L. Diverse responses of different structured forest to drought in southwest China through remotely sensed data. Int. J. Appl. Earth Obs. 2018, 69, 217–225. [Google Scholar] [CrossRef]
- Kogan, F.N. Drought of the late 1980s in the United States as derived from NOAA polar-orbiting satellite data. Bull. Am. Meteorol. Soc. 1995, 76, 655–668. [Google Scholar] [CrossRef]
- Kogan, F.N. Application of vegetation index and brightness temperature for drought detection. Adv. Space Res. 1995, 15, 91–100. [Google Scholar] [CrossRef]
- Unganai, L.S.; Kogan, F.N. Drought monitoring and corn yield estimation in Southern Africa from AVHRR data. Remote Sens. Environ. 1998, 63, 219–232. [Google Scholar] [CrossRef]
- Peters, A.J.; Walter-Shea, E.A.; Ji, L.; Vina, A.; Hayes, M.; Svoboda, M.D. Drought monitoring with NDVI-based standardized vegetation index. Photogramm. Eng. Remote Sens. 2002, 68, 71–75. [Google Scholar]
- Wang, L.; Qu, J.J. NMDI: A normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Rhee, J.Y.; Im, J.H.; Carbone, G.J. Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. Remote Sens. Environ. 2010, 114, 2875–2887. [Google Scholar] [CrossRef]
- Hao, C.; Zhang, J.; Yao, F. Combination of multi-input remote sensing data for drought monitoring over Southwest China. Int. J. Appl. Earth Obs. 2015, 35, 270–283. [Google Scholar] [CrossRef]
- Seiler, R.; Kogan, F.; Sullivan, J. AVHRR-based vegetation and temperature condition indices for drought detection in Argentina. Adv. Space Res. 1998, 21, 481–484. [Google Scholar] [CrossRef]
- Quiring, S.M.; Ganesh, S. Evaluating the utility of the vegetation condition index (VCI) for monitoring meteorological drought in Texas. Agric. For. Meteorol. 2010, 150, 330–339. [Google Scholar] [CrossRef]
- Zhai, J.Q.; Gao, B.; Zhu, X.Y. Fact sheet on climate disasters in China. In Annual Report on Actions to Address Climate Change; Wang, G.W., Zheng, G.G., Eds.; Social Sciences Academic Press: Beijing, China, 2014. [Google Scholar]
- Qin, D.; Zhang, J.; Shan, C.; Song, L. China National Assessment Report on Risk Management and Adaptation of Climate Extremes and Disasters; Science Press: Beijing, China, 2015; pp. 70–124. [Google Scholar]
- Zhai, J.; Huang, J.; Su, B.; Cao, L.; Wang, Y.; Jiang, T.; Fischer, T. Intensity–area–duration analysis of droughts in China 1960–2013. Clim. Dyn. 2017, 48, 151–168. [Google Scholar] [CrossRef]
- He, B.; Lü, A.; Wu, J.; Liu, M. Drought hazard assessment and spatial characteristics analysis in China. J. Geogr. Sci. 2011, 21, 235–249. [Google Scholar] [CrossRef]
- Yao, J.; Zhao, Y.; Chen, Y.; Yu, X.; Zhang, R. Multi-scale assessments of droughts: A case study in Xinjian, China. Sci. Total Environ. 2018, 630, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.L.; Shi, Y.J.; Wang, J.S.; Li, Y.P.; Zhu, Y.J.; Yang, Z.H.; Wei, B.L. Spatial and temporal variation characteristics of drought in Northwest China during 1961–2009 with standardized precipitation index. J. Glaciol. Geocryol. 2013, 35, 938–948. [Google Scholar]
- Zhang, J.; Mu, Q.; Huang, J. Assessing the remotely sensed drought severity index for agricultural drought monitoring and impact analysis in north China. Ecol. Indic. 2016, 63, 296–309. [Google Scholar] [CrossRef]
- Zhao, S.; Cong, D.; He, K.; Yang, H.; Qin, Z. Spatial-temporal variation of drought in China from 1982 to 2010 based on a modified temperature vegetation drought index (mTVDI). Sci. Rep. 2017, 7, 17473. [Google Scholar] [CrossRef]
- Liu, R.R.; Lu, B.H.; Chen, Y.T.; Dong, C.; Ruan, X.B.; Tang, W.T. Analysis on features of dry climate in the Three-Rivers Headwaters based on palmer drought severity index. Yellow River 2013, 35, 59–62. (In Chinese) [Google Scholar]
- Bai, X.L.; Wei, J.H.; Xie, H.W. Characteristics of wetness/dryness variation and their influences in the Three-River Headwaters region. Acta Geol. Sin. 2017, 37, 8397–8410. (In Chinese) [Google Scholar]
- Zeng, H.W.; Li, L.J. Accuracy validation of TRMM 3B43 data in Lancang river basin. Acta Geol. Sin. 2011, 66, 994–1004. (In Chinese) [Google Scholar]
- Gao, W.; An, R.; Wang, Z. Drought Index and Its Application Based on Microwave Remote Sensing Technology: A Case Study in the Three-River Headwaters Region. Arid Zone Res. 2017, 34, 541–550. (In Chinese) [Google Scholar]
- Dai, S.; Li, L.; Wang, Z.Y. The diagnosis analysis of exceptional drought Three-River Headwaters Region in the summer of 2006. J. Qinghai Meteorol. 2007, 3, 39–42. (In Chinese) [Google Scholar]
- Yi, X.S.; Yin, Y.Y.; Li, G.S.; Peng, J.T. Temperature Variation in Recent 50 Years in the Three-River Headwaters Region of Qinghai Province. Acta Geol. Sin. 2011, 66, 1451–1465. (In Chinese) [Google Scholar]
- Rouse, J., Jr.; Haas, R.; Schell, J.; Deering, D. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 1, 309–317. [Google Scholar]
- National Meteorological Information Center Home Page. Available online: http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_PRE_MON_GRID_0.5.html (accessed on 1 September 2018). (In Chinese).
- National Meteorological Information Center Home Page. Available online: http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_TEM_MON_GRID_0.5.html (accessed on 1 September 2018). (In Chinese).
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef]
- Yu, L.; Wang, J.; Gong, P. Improving 30m global land-cover map from-GLC with time series Modis and auxiliary data sets: A segmentation-based approach. Int. J. Remote Sens. 2013, 34, 5851–5867. [Google Scholar] [CrossRef]
- Finer Resolution Observation and Monitoring—Global Land Cover Home Page. Available online: http://data.ess.tsinghua.edu.cn/fromglc2017v1.html (accessed on 24 December 2018).
- Zheng, Y.T.; Huang, Y.F.; Wang, K.Y. Response of Vegetation to Water Stress in the Three River Headwaters Region of China. J. Basic Sci. Eng. 2018, 26, 249–262. (In Chinese) [Google Scholar]
- Wu, X.; Wang, Z.; Zhou, X.; Lai, C.; Lin, W.; Chen, X. Observed changes in precipitation extremes across 11 basins in China during 1961–2013. Int. J. Climatol. 2016, 36, 2866–2885. [Google Scholar] [CrossRef]
- Dong, L.; Zhang, M.J.; Wang, S.J.; Zhu, X.F.; Ren, Z.G.; Wang, Q. Extreme precipitation events in arid areas in Northwest China based on gridded data. J. Nat. Resour. 2014, 29, 2048–2057. (In Chinese) [Google Scholar]
- Shi, J.; Reichenbach, S.E. Image interpolation by two-dimensional parametric cubic convolution. IEEE Trans. Image Process. 2006, 15, 1857–1870. [Google Scholar]
- Shi, H.; Li, T.; Wei, J.H. Evaluation of the gridded CRU ts precipitation dataset with the point rain gauge records over the Three River Headwaters Region. J. Hydrol. 2017, 548, 322–332. [Google Scholar] [CrossRef]
- NASA Earth Exchange Home Page. Available online: https://nex.nasa.gov/nex/ (accessed on 10 October 2018).
- Simoniello, T. On the relevance of accurate correction and validation procedures in the analysis of AVHRR-NDVI time series for long-term monitoring. J. Geophys. Res. Atmos. 2004, 109, D20107. [Google Scholar] [CrossRef]
- Climate Hazards Group Home Page. Available online: http://chg.geog.ucsb.edu/index.html (accessed on 10 October 2018).
- Moderate Resolution Imaging Spectroradiometer Home Page. Available online: https://modis.gsfc.nasa.gov/data/dataprod/mod11.php (accessed on 10 October 2018).
- Geospatial Date Cloud Home Page. Available online: http://www.gscloud.cn/ (accessed on 10 October 2018).
- Rouault, M.; Richard, Y. Intensity and spatial extent of droughts in southern Africa. Geophys. Res. Lett. 2005, 32, L15702. [Google Scholar] [CrossRef]
- Niu, J.; Chen, J.; Sun, L. Exploration of drought evolution using numerical simulations over the Xijiang (West River) basin in south china. J. Hydrol. 2015, 526, 68–77. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D. M Smith Crop Evapotranspiration: Guidelines for Computing Crop Requirements; Irrigation and Drainage Paper 56; FAO: Roma, Italy, 1998. [Google Scholar]
- Droogers, P.; Allen, R.G. Estimating reference evapotranspiration under inaccurate data conditions. Irrig. Drain. Syst. 2002, 16, 33–45. [Google Scholar] [CrossRef]
- Mavromatis, T. Drought index evaluation for assessing future wheat production in Greece. Int. J. Climatol. 2007, 27, 911–924. [Google Scholar] [CrossRef]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multi-scala drought index sensitive to global warming: The standardized precipitation evapotranspiration index—SPEI. J. Clim. 2012, 23, 1696–1718. [Google Scholar] [CrossRef]
- Onyutha, C. On Rigorous Drought Assessment Using Daily Time Scale: Non-Stationary Frequency Analyses, Revisited Concepts, and a New Method to Yield Non-Parametric Indices. Hydrology 2017, 4, 48. [Google Scholar] [CrossRef]
- Jain, S.K.; Keshri, R.; Goswami, A.; Sarkar, A.; Chaudhry, A. Identification of drought-vulnerable areas using NOAA AVHRR data. Int. J. Remote Sens. 2009, 30, 2653–2668. [Google Scholar] [CrossRef]
- Brown, J.F.; Wardlow, B.D.; Tadesse, T.; Hayes, M.J.; Reed, B.C. The Vegetation Drought Response Index (VegDRI): A new integrated approach for monitoring drought stress in vegetation. GISci. Remote Sens. 2008, 45, 16–46. [Google Scholar] [CrossRef]
- Jiao, W.; Zhang, L.; Chang, Q.; Fu, D.; Cen, Y.; Tong, Q. Evaluating an enhanced vegetation condition index (VCI) based on VIUPD for drought monitoring in the continental United States. Remote Sens. 2016, 8, 224. [Google Scholar] [CrossRef]
- Bhuiyan, C.; Singh, R.P.; Kogan, F.N. Monitoring drought dynamics in the Aravalli region (India) using different indices based on ground and remote sensing data. Int. J. Appl. Earth Obs. 2006, 8, 289–302. [Google Scholar] [CrossRef]
Station Name | Longitude (° E) | Latitude (° N) | Elevation (m) |
---|---|---|---|
Jiangxigou | 100.29 | 36.35 | 3201 |
Gonghe | 100.37 | 36.16 | 2835 |
Guide | 101.22 | 36.01 | 2237 |
Huangzhong | 101.35 | 36.3 | 2668 |
Wudaoliang | 93.05 | 35.13 | 4612 |
Shazhuyu | 100.16 | 36.16 | 2872 |
Xinghai | 99.59 | 35.35 | 3323 |
Guinan | 100.44 | 35.35 | 3120 |
Tongde | 100.36 | 35.15 | 3148 |
Jianzha | 102.01 | 35.56 | 2086 |
Zeku | 101.28 | 35.02 | 3663 |
Xunhua | 102.27 | 35.51 | 1921 |
Tongren | 102.01 | 35.31 | 2491 |
Tuotuohe | 92.26 | 34.13 | 4533 |
Zhiduo | 95.37 | 33.51 | 4179 |
Zaiduo | 95.17 | 32.53 | 4066 |
Qumalai | 95.48 | 34.07 | 4175 |
Yushu | 96.58 | 33.00 | 3717 |
Maduo | 98.13 | 34.55 | 4272 |
Qingshuihe | 97.08 | 33.48 | 4415 |
Maxin | 100.14 | 34.29 | 3719 |
Gande | 99.54 | 33.58 | 4050 |
Dari | 99.39 | 33.45 | 3968 |
Henan | 101.36 | 34.44 | 3500 |
Jiuzhi | 101.29 | 33.26 | 3629 |
Nangqian | 96.28 | 32.12 | 3644 |
Index | Percent | SPI-1 | SPI-3 | SPI-6 | SPEI-1 | SPEI-3 | SPEI-6 | SPNI-1 | SNPI-3 | SNPI-6 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TCI | PCI | SMCI | VCI | ||||||||||
CMDI | 29.00% | 64.00% | 7.00% | - | 0.70 | 0.44 | 0.32 | 0.73 | 0.53 | 0.31 | 0.58 | 0.32 | 0.31 |
CVDI | 65.00% | 26.00% | 6.00% | 4.00% | 0.57 | 0.49 | 0.34 | 0.65 | 0.63 | 0.40 | 0.56 | 0.34 | 0.32 |
Name | PCI | TCI | SMCI | VCI | CMDI | CVDI |
---|---|---|---|---|---|---|
Extreme drought | 0–0.1 | 0–0.1 | 0–0.1 | 0–0.1 | 0–0.1 | 0–0.1 |
Severe drought | 0.1–0.2 | 0.1–0.2 | 0.1–0.2 | 0.1–0.2 | 0.1–0.2 | 0.1–0.2 |
Moderate drought | 0.2–0.3 | 0.2–0.3 | 0.2–0.3 | 0.2–0.3 | 0.2–0.3 | 0.2–0.3 |
Mild drought | 0.3–0.4 | 0.3–0.4 | 0.3–0.4 | 0.3–0.4 | 0.3–0.4 | 0.3–0.4 |
Abnormally dry | 0.4–0.5 | 0.4–0.5 | 0.4–0.5 | 0.4–0.5 | 0.4–0.5 | 0.4–0.5 |
No drought | 0.5–1 | 0.5–1 | 0.5–1 | 0.5–1 | 0.5–1 | 0.5–1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Li, T.; Wei, J. Exploring Drought Conditions in the Three River Headwaters Region from 2002 to 2011 Using Multiple Drought Indices. Water 2019, 11, 190. https://doi.org/10.3390/w11020190
Wang K, Li T, Wei J. Exploring Drought Conditions in the Three River Headwaters Region from 2002 to 2011 Using Multiple Drought Indices. Water. 2019; 11(2):190. https://doi.org/10.3390/w11020190
Chicago/Turabian StyleWang, Keyi, Tiejian Li, and Jiahua Wei. 2019. "Exploring Drought Conditions in the Three River Headwaters Region from 2002 to 2011 Using Multiple Drought Indices" Water 11, no. 2: 190. https://doi.org/10.3390/w11020190
APA StyleWang, K., Li, T., & Wei, J. (2019). Exploring Drought Conditions in the Three River Headwaters Region from 2002 to 2011 Using Multiple Drought Indices. Water, 11(2), 190. https://doi.org/10.3390/w11020190