Effects of Residue Cover on Infiltration Process of the Black Soil Under Rainfall Simulations
State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
*
Author to whom correspondence should be addressed.
Water 2019, 11(12), 2593; https://doi.org/10.3390/w11122593
Received: 19 September 2019 / Revised: 4 December 2019 / Accepted: 5 December 2019 / Published: 9 December 2019
(This article belongs to the Special Issue Modeling of Soil Erosion and Sediment Transport)
Residue cover is widely used for soil conservation after crop harvesting in the black soil region of the Northeastern China, which influences infiltration. It is necessary to optimize infiltration models for accurate predictions under bare and residue cover slope conditions. Rainfall simulation experiments were conducted to quantify the infiltration for the black soil under four rainfall intensities (30, 60, 90, and 120 mm/h), five residue coverage controls (15%, 35%, 55%, 75%, and bare slope), and two soil moisture (8% and approximately 30%) conditions. The observed data were used to fit and compare four infiltration models by Kostiakov, Mein and Larson (short for GAML, a modification of GreenAmpt model made by Mein and Larson), Horton, and Philip under the bare slope conditions. The residue cover infiltration factor (RCFi) was derived to predict the infiltration under the residue cover slopes, which was defined as the ratio of infiltration from residue-covered soil to that from bare soil. The results showed that the newly derived equation coupling the Philip model with the RCFi was the most accurate way of predicting the cumulative infiltration of black soil under various residue covers, and could be applied to the black soil region for residue cover infiltration predictions.
Keywords:
infiltration estimation; black soil; residue cover; model validation