Drinking-Water Supply for CKDu Affected Areas of Sri Lanka, Using Nanofiltration Membrane Technology: From Laboratory to Practice
Abstract
:1. Introduction
1.1. Chronic Kidney Disease of Unknown Etiology (CKDu) in Sri Lanka
1.2. Groundwater Quality in CKDu Areas
1.3. Decentralized Drinking-Water Treatment
1.4. Nanofiltration in Drinking-Water Production
2. Materials and Methods
2.1. Synthetic Groundwater
2.2. Experimental Setup and Membranes
2.3. Membrane Cleaning
2.4. Analytical Methods
2.5. Pilot Drinking-Water Station
2.6. Microbial Community Analysis
3. Results and Discussions
3.1. Selection and Morphological Analysis of Membrane
3.2. Performance of Pilot Drinking-Water Station
3.2.1. Water Quality of Permeate
3.2.2. Water-Quality Comparison of NF and RO Treatment Plants
3.2.3. Comparative Analysis of the Microbial Community between RO and NF Treated Water
4. Conclusions
5. Future Research Directions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dharma-wardana, M.W.C.; Amarasiri, S.L.; Dharmawardene, N.; Panabokke, C.R. Chronic kidney disease of unknown aetiology and ground-water ionicity: Study based on Sri Lanka. Environ. Geochem. Health 2015, 37, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Rango, T.; Jeuland, M.; Manthrithilake, H.; McCornick, P. Nephrotoxic contaminants in drinking water and urine, and chronic kidney disease in rural Sri Lanka. Sci. Total Environ. 2015, 518–519, 574–585. [Google Scholar] [CrossRef] [PubMed]
- Wimalawansa, S.J. Escalating chronic kidney diseases of multi-factorial origin in Sri Lanka: Causes, solutions, and recommendations. Environ. Health Prev. Med. 2014, 19, 375–394. [Google Scholar] [CrossRef] [PubMed]
- Chandrajith, R.; Dissanayake, C.B.; Ariyarathna, T.; Herath, H.M.J.M.K.; Padmasiri, J.P. Dose-dependent Na and Ca in fluoride-rich drinking water -Another major cause of chronic renal failure in tropical arid regions. Sci. Total Environ. 2011, 409, 671–675. [Google Scholar] [CrossRef]
- Jayatilake, N.; Mendis, S.; Maheepala, P.; Mehta, F.R. Chronic kidney disease of uncertain aetiology: Prevalence and causative factors in a developing country. BMC Nephrol. 2013, 14, 180. [Google Scholar] [CrossRef]
- Ranasinghe, H.; Ranasinghe, M. Status, Gaps and Way Forward in Addressing the Chronic Kidney Disease Unidentified (CKDu) in Sri Lanka. J. Environ. Prof. Sri Lanka 2015, 4, 58. [Google Scholar] [CrossRef]
- Athuraliya, T.; Abeysekera, D.; Amerasinghe, P.; Kumarasiri, P.; Dissanayake, V. Prevalence of chronic kidney disease in two tertiary care hospitals: High proportion of cases with uncertain aetiology. Ceylon Med. J. 2009, 54, 23–25. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Chronic Kidney Disease of Unknown Origin (CKDu): National Research Programme for Chronic Kidney Disease of Unknown Origin (CKDu) in Sri Lanka; WHO: Geneva, Switzerland, 2013. [Google Scholar]
- Dissanayake, C.B.; Chandrajith, R. Groundwater fluoride as a geochemical marker in the etiology of chronic kidney disease of unknown origin in Sri Lanka. Ceylon J. Sci. 2017, 46, 3. [Google Scholar] [CrossRef]
- Wasana, H.M.S.; Aluthpatabendi, D.; Kularatne, W.M.T.D.; Wijekoon, P.; Weerasooriya, R.; Bandara, J. Drinking water quality and chronic kidney disease of unknown etiology (CKDu): Synergic effects of fluoride, cadmium and hardness of water. Environ. Geochem. Health 2016, 38, 157–168. [Google Scholar] [CrossRef]
- Wickramarathna, S.; Balasooriya, S.; Diyabalanage, S.; Chandrajith, R. Tracing environmental aetiological factors of chronic kidney diseases in the dry zone of Sri Lanka—A hydrogeochemical and isotope approach. J. Trace Elem. Med. Biol. 2017, 44, 298–306. [Google Scholar] [CrossRef]
- Makehelwala, M.; Wei, Y.; Weragoda, S.K.; Weerasooriya, R.; Zheng, L. Characterization of dissolved organic carbon in shallow groundwater of chronic kidney disease affected regions in Sri Lanka. Sci. Total Environ. 2019, 660, 865–875. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.M.; McClelland, N.I.; Deininger, R.A.; O’Connor, M.F.A. Water Quality Index–Crashing the Psychological Barriers. In Proceedings of the Indicators of Environmental Quality–Proceedings of a symposium held during the AAAS meeting, Philadelphia, PA, USA, 26–31 December 1971; Thomas, W.A., Ed.; Plenum Press: New York, NY, USA, 1972. [Google Scholar]
- Cooray, T.; Wei, Y.; Zhong, H.; Zheng, L.; Weragoda, S.K.; Weerasooriya, R. Assessment of groundwater quality in CKDu Affected areas of Sri Lanka: Implications for drinking water treatment. Int. J. Environ. Res. Public Health 2019, 16, 1698. [Google Scholar] [CrossRef] [PubMed]
- Aumeier, B.M.; Yüce, S.; Wessling, M. Temperature Enhanced Backwash. Water Res. 2018, 142, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Larsen, T.A.; Hoffmann, S.; Lüthi, C.; Truffer, B.; Maurer, M. Emerging solutions to the water challenges of an urbanizing world. Science 2016, 352, 928–933. [Google Scholar] [CrossRef] [PubMed]
- Ray, C.; Jain, R. Low Cost Emergency Water Purification Technologies. Integrated Water Security Series, 1st ed.; Butterworth-Heinemann—Elsevier: Oxford, UK, 2014; ISBN 978-0-12-411465-4. [Google Scholar]
- Mintz, E.D.; Reiff, F.M.; Tauxe, R.V. Safe Water Treatment and Storage in the Home. J. Am. Med. Assoc. 1995, 273, 948–953. [Google Scholar] [CrossRef]
- Mohamed, H.; Clasen, T.; Njee, R.M.; Malebo, H.M.; Mbuligwe, S.; Brown, J. Microbiological effectiveness of household water treatment technologies under field use conditions in rural Tanzania. Trop. Med. Int. Health 2016, 21, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Pickering, A.J.; Arnold, B.F.; Dentz, H.; Colford, J.M.J.; Clasen, T.F.; Null, C. “lifestraw” water filters by rural kenyan households. In Proceedings of the 18th International Symposium on Health-related Water Microbiology, Lisboa, Portugal, 11–20 September 2015; Monteiro, S., Santos, R., Eds.; International Water Association: London, UK, 2015; p. 471. [Google Scholar]
- Sobsey, M.D.; Stauber, C.E.; Casanova, L.M.; Brown, J.M.; Elliot, M.A. Point of use household drinking water filtration: A practical, effective solution for providing sustained access to safe drinking water in the developing world. Environ. Sci. Technol. 2008, 42, 4261–4267. [Google Scholar] [CrossRef]
- Peter-varbanets, M.; Zurbru, C.; Swartz, C.; Pronk, W. Decentralized systems for potable water and the potential of membrane technology. Water Res. 2009, 43, 245–265. [Google Scholar] [CrossRef]
- Aumeier, B.M.; Yüce, S.; Sheva, Y.; von Müller, G.; Vogt, G.; Wolf, A.; Vigneswaran, S.; Kazner, C. Report on Assessment, Pre-Selection, Recommendation of the Proposed Solutions for Development and Adaptation as Decentralised Water Treatment Solution for India; EU FP7 Project Water4India; European Commission: Luxembourg, 2014. [Google Scholar]
- Schafer, A.I.; Fane, A.G.; Waite, T.D. Nanofiltration Principles and Applications, 1st ed.; Schafer, A.I., Fane, A.G., Waite, T.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; ISBN 1-85617-405-3. [Google Scholar]
- García-Vaquero, N.; Lee, E.; Jiménez Castañeda, R.; Cho, J.; López-Ramírez, J.A. Comparison of drinking water pollutant removal using a nanofiltration pilot plant powered by renewable energy and a conventional treatment facility. Desalination 2014, 347, 94–102. [Google Scholar] [CrossRef]
- Richards, L.A.; Richards, B.S.; Schäfer, A.I. Renewable energy powered membrane technology: Salt and inorganic contaminant removal by nanofiltration/reverse osmosis. J. Membr. Sci. 2011, 369, 188–195. [Google Scholar] [CrossRef]
- Wang, J.; Li, K.; Yu, D.; Zhang, J.; Wei, Y. Fouling characteristics and cleaning strategies of NF membranes for the advanced treatment of antibiotic production wastewater. Environ. Sci. Pollut. Res. 2017, 24, 8967–8977. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Wang, J.; Zhang, H.; Zhang, Y.; Hang, M.A. Effects of sodium hypochlorite on structural/surface characteristics, filtration performance and fouling behaviors of PVDF membranes. J. Membr. Sci. 2016, 519, 22–31. [Google Scholar] [CrossRef]
- HYDRANAUTICS- Nitto Group Company. Chemical Pretreatment for RO and NF. Technical Application Bulletin No. 111; HYDRANAUTICS- Nitto Group Company: Oceanside, CA, USA, 2013. [Google Scholar]
- Stoquart, C.; Servais, P.; Bérubé, P.R.; Barbeau, B. Hybrid Membrane Processes using activated carbon treatment for drinking water: A review. J. Membr. Sci. 2012, 411–412, 1–12. [Google Scholar] [CrossRef]
- Miao, R.; Li, X.; Wu, Y.; Wang, P.; Wang, L.; Wu, G.; Wang, J.; Lv, Y.; Liu, T. A comparison of the roles of Ca2+ and Mg2+ on membrane fouling with humic acid: Are there any differences or similarities? J. Membr. Sci. 2018, 545, 81–87. [Google Scholar] [CrossRef]
- Matsuno, Y.; Elkaduwa, W.K.B.; Shinogi, Y. Irrigation water quality in the southeastern dry zone of Sri Lanka. The Kirindi Oya Scheme. In Status and Future Direction of Water Research in Sri Lanka, Proceedings of the National Conference held at the BMICH, Colombo, Sri Lanka, 4–6 November 1998; Samad, M., Wijesekera, N.T.S., Birch, A., Eds.; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2000; pp. 89–100. [Google Scholar]
- Government of Sri Lanka. Gazette Extraordinary of the Democratic Socialist Rpublic of Sri Lanka -2008-02-01 Tolerance Limits for Discharge of Industrial Waste Water; Government of Sri Lanka: Colombo, Sri Lanka, 2008.
- Sri Lanka Standards Institution. Sri Lanka Standard Institution: Specification for Potable Water-(First Revision); Sri Lanka Standards Institution: Colombo, Sri Lanka, 2013. [Google Scholar]
- Paul, D.H. The Four Most Common Problems in Membrane Water Treatment Today; David H. Paul, Inc.: Graham, NC, USA, 2014. [Google Scholar]
- Muthukumarana, N.N.; Premachandra, N.P.; Ritigala, H.M.T.S. Analysis of Water Quality Parameters in Reverse Osmosis Treated Water in Chronic Kidney Disease of Unknown Etiology (CKDu) Affected Areas. In Proceedings of the International Symposium–Uva Wellassa University, Badulla, Sri Lanka, 20–21 January 2017; Uva Wellassa University Sri Lanka: Badulla, Sri Lanka, 2017; p. 318. [Google Scholar]
- Colliver, B.B.; Stephenson, T. Production of nitrogen oxide and dinitrogen oxide by autotrophic nitrifiers. Biotechnol. Adv. 2000, 18, 219–232. [Google Scholar] [CrossRef]
- Iyer, K.; Gajalakshmi, S.; Mythili, S.; Sathiavelu, A. Microbial BioRemediation—A Review. J. Agric. Vet. Sci. 2012, 4, 4–13. [Google Scholar]
- Mermod, M.; Solioz, M.; Abicht, H.K.; Atpases, C.; Mancini, S. Response of Gram-positive bacteria to copper stress. J. Biol. Inorg. Chem. 2010, 15, 3–14. [Google Scholar]
- Inglis, R.F.; Scanlan, P.; Buckling, A. Iron availability shapes the evolution of bacteriocin resistance in Pseudomonas aeruginosa. ISME J. 2016, 10, 2060–2066. [Google Scholar] [CrossRef]
- Douterelo, I.; Fish, K.E.; Boxall, J.B. Succession of bacterial and fungal communities within biofilms of a chlorinated drinking water distribution system. Water Res. 2018, 141, 74–85. [Google Scholar] [CrossRef]
- Lv, L.; Jiang, T.; Zhang, S.; Yu, X. Exposure to mutagenic disinfection by-products leads to increase of antibiotic resistance in Pseudomonas aeruginosa. Environ. Sci. Technol. 2014, 48, 8188–8195. [Google Scholar] [CrossRef]
- Chen, L.; Zheng, D.; Liu, B.; Yang, J.; Jin, Q. VFDB 2016: hierarchical and refined dataset for big data analysis--10 years on. Nucleic Acids Res. 2016, 44, D694–D697. [Google Scholar] [CrossRef] [PubMed]
- Bouskill, N.J.; Barnhart, E.P.; Galloway, T.S.; Handy, R.D.; Ford, T.E. Quantification of changing Pseudomonas aeruginosa sodA, htpX and mt gene abundance in response to trace metal toxicity: A potential in situ biomarker of environmental health. FEMS Microbiol. Ecol. 2007, 60, 276–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No. | Model/type | Manufacturer | Material | MWCO (Molecular Weight Cut-Off) |
---|---|---|---|---|
1 | DK1812 | GE | Polyamide | 150–300 |
2 | DL1812 | GE | Polyamide | 150–300 |
3 | NFX-1812 | Synder | Polyamide | 150–300 |
4 | NFG-1812 | Synder | Polyamide | 600–800 |
5 | NF4-1812 | Nanostone | Polysulfone | ~150 |
6 | NF8-1812 | Nanostone | Polysulfone | ~300 |
7 | DF-90-1812 | Origin Water | Polyamide | ~400 |
8 | NF1-1812-75 | Keensen | Polyamide | |
9 | JCM-1812-75N | HN-JCM | Polyamide | |
10 | GL-1812-75N | Gallon | Polyamide |
No. | Solution | pH |
---|---|---|
1 | DI water | 7.0 |
2 | HCl | 2.0 |
3 | NaOH | 12.0 |
4 | NaOH (0.1% w) + SDS (0.025% w) | 12.0 |
5 | Acetic | 3.0 |
6 | NaOCl | 10.0 |
7 | HCl then NaOH | 2.0/12.0 |
8 | NaOH then HCl | 12.0/2.0 |
9 | Acetic then NaOCl | 3.0/10.0 |
10 | NaOCl then Acetic | 10.0/3.0 |
Parameter | Units | SLS 614: 2013 | Sample Date—13 September 2018 | ||
---|---|---|---|---|---|
Raw | Permeate | Concentrate | |||
Color | Hazen units | 15 | 18 | 4 | 20 |
Turbidity | NTU | 2 | 0.7 | 0.4 | 0.9 |
Electrical Conductivity | μs/cm | 750 | 565 | 24 | 1523 |
pH | - | 6.5–8.5 | 7.17 | 6.4 | 7.7 |
Chloride (as Cl) | mg/L | 250 | 11 | 3 | 6 |
Total Alkalinity (as CaCO3) | mg/L | 200 | 306 | 24 | 684 |
Total Hardness (as CaCO3) | mg/L | 250 | 200 | 4 | 500 |
Free Ammonia (as NH3) | mg/L | 0.06 | ND | ND | ND |
Nitrate (as NO3) | mg/L | 50 | 0.4 | 0.3 | 0.5 |
Nitrite (as NO2) | mg/L | 3 | 0.01 | 0.01 | 0.01 |
Fluorides (as F) | mg/L | 1 | 1.3 | 0.01 | 1.5 |
Phosphates (as PO4) | mg/L | 2 | 0.3 | 0.4 | 0.3 |
Iron (as Fe) | mg/L | 0.3 | ND | ND | ND |
Manganese (as Mn) | mg/L | 0.1 | 0.05 | 0.08 | 0.09 |
Calcium (as CaCO3) | mg/L | 100 | 136 | 3 | 4 |
Type | Units/Rate | Amount | Total |
---|---|---|---|
Direct income | |||
Water selling | 1500 × 1 × 30 | 45,000 | 45,000 |
Direct expenditure | |||
Salary for operator | 15,000 | ||
Electricity bill | 5000 | 20,000 | |
Savings for the month | 25,000 |
Parameter | Units | SLS 614: 2013 | 13 September 2018 | 27 September 2018 | 18 April 2019 | 11 July 2019 |
---|---|---|---|---|---|---|
Color | Hazen | 15 | 4 | 0 | 0 | 0 |
Turbidity | NTU | 2 | 0.40 | 0.10 | 0.36 | 1.05 |
Electrical Conductivity | μs/cm | 750 | 24 | 28 | 30 | 40 |
pH | 6.5–8.50 | 6.40 | 6.50 | 6.65 | 7.16 | |
Chloride (as Cl) | mg/L | 250 | 3 | 2 | 9 | 10 |
Total Alkalinity (as CaCO3) | mg/L | 200 | 24 | 12 | 17 | 16 |
Total Hardness (as CaCO3) | mg/L | 250 | 4 | 10 | 10 | 18 |
Free Ammonia (as NH3) | mg/L | 0.06 | ND | ND | 0.06 | 0.06 |
Nitrate (as NO3) | mg/L | 50 | 0.3 | 2.60 | ND | 0.44 |
Nitrite (as NO2) | mg/L | 3 | 0.01 | 0.01 | 1.90 | ND |
Fluorides (as F) | mg/L | 1 | 0.01 | 0.12 | 0.20 | 0.10 |
Phosphates (as PO4) | mg/L | 2 | 0.4 | ND | 0.07 | 0.94 |
Iron (as Fe) | mg/L | 0.3 | ND | 0.1 | 0.03 | 0.01 |
Manganese (as Mn) | mg/L | 0.1 | 0.08 | ND | ND | 0.01 |
Calcium (as CaCO3) | mg/L | 100 | 4 | 3 | 7 | - |
Parameter | RO Plant | NF Plant | |||||||
---|---|---|---|---|---|---|---|---|---|
RO 1 | RO 2 | RO 3 | RO 4 | RO 5 | RO 6 | RO 7 | RO 8 | ||
pH | 6.95 | 7.00 | 6.84 | 5.74 | 5.66 | 5.96 | 6.40 | 7.30 | 7.00 |
EC (μs/cm) | 35 | 16 | 30 | 36 | 15 | 31 | 102 | 43 | |
Alkalinity (mg/L) | nd | nd | 1.4 | 4.9 | nd | 10 | 19 | 20 | 29 |
Mg (mg/L) | nd | nd | nd | nd | nd | nd | nd | nd | 1.14 |
Ca (mg/L) | nd | nd | 0.75 | 0.33 | 0.15 | 0.94 | 2.02 | 3.05 | 2.43 |
Hardness (mg/L) | nd | nd | 1.86 | 0.82 | 0.37 | 2.35 | 5.05 | 8.88 | 10 |
K (mg/L) | nd | nd | 0.14 | 0.31 | 0.07 | 0.48 | 0 | 0 | 0.21 |
Na (mg/L) | 6.51 | 3.27 | 5.24 | 7.73 | 3.26 | 5.11 | 6.90 | 16.85 | 4.38 |
Cl− (mg/L) | 7.11 | 2.88 | 2.48 | 3.02 | 39.96 | 4.95 | 1.66 | 19.15 | 1.16 |
F− (mg/L) | 2.56 | 2.89 | 0.04 | 0.50 | 0.40 | 0.40 | 0.07 | 0.07 | nd |
SO42− (mg/L) | 4.34 | 3.79 | 2.52 | 2.21 | 4.28 | 4.46 | 1.12 | 1.75 | 0.57 |
Fe (ng/L) | 2.3 | nd | 0.1 | 0.1 | nd | 0.4 | 8.5 | 4.0 | 1.4 |
DOC (mg/L) | 1.40 | 1.70 | 0.01 | 0.48 | 0.35 | 2.18 | 0.53 | 0.30 | 0.90 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cooray, T.; Wei, Y.; Zhang, J.; Zheng, L.; Zhong, H.; Weragoda, S.K.; Weerasooriya, R. Drinking-Water Supply for CKDu Affected Areas of Sri Lanka, Using Nanofiltration Membrane Technology: From Laboratory to Practice. Water 2019, 11, 2512. https://doi.org/10.3390/w11122512
Cooray T, Wei Y, Zhang J, Zheng L, Zhong H, Weragoda SK, Weerasooriya R. Drinking-Water Supply for CKDu Affected Areas of Sri Lanka, Using Nanofiltration Membrane Technology: From Laboratory to Practice. Water. 2019; 11(12):2512. https://doi.org/10.3390/w11122512
Chicago/Turabian StyleCooray, Titus, Yuansong Wei, Junya Zhang, Libing Zheng, Hui Zhong, Sujithra K. Weragoda, and Rohan Weerasooriya. 2019. "Drinking-Water Supply for CKDu Affected Areas of Sri Lanka, Using Nanofiltration Membrane Technology: From Laboratory to Practice" Water 11, no. 12: 2512. https://doi.org/10.3390/w11122512
APA StyleCooray, T., Wei, Y., Zhang, J., Zheng, L., Zhong, H., Weragoda, S. K., & Weerasooriya, R. (2019). Drinking-Water Supply for CKDu Affected Areas of Sri Lanka, Using Nanofiltration Membrane Technology: From Laboratory to Practice. Water, 11(12), 2512. https://doi.org/10.3390/w11122512