Is Precipitation the Main Trigger of Medium-Magnitude Floods in Large Alpine Catchments?
Abstract
:1. Introduction
2. Studied Area and Data
2.1. The Upper Rhône River Catchment and the Gauge Station of Bognes
2.2. The Three Sub-Catchments of the Upper Rhône River
2.3. The Medium-Magnitude Flood Events
2.4. Precipitation Data
2.4.1. Weather Station Data
2.4.2. ERA-20C Reanalysis
2.5. Buffer Role of Lake Geneva on Precipitation
3. Methods
3.1. Descriptors of Precipitation
3.2. Descriptor of Discharge Variability
4. Clustering and Resulting Flood Typology
4.1. Hierarchical Clustering
4.2. Hydro-Meteorological Characteristics of the Flood Types
4.3. Temporal Characteristics of the Four Flood Types
5. Discussion: Precipitation Only vs. Hydrological Processes for Flood Triggering
5.1. Alpine Flood Types from the Literature
5.2. Comparison with the Flood Types of the Literature
5.3. Role of Precipitation in Both Flood Type and Flood Magnitude
6. Conclusions
- Autumn/winter type 2 results from the combination of short and long intense precipitation sequences, similar to the “long-rain floods” type defined by Merz and Blöschl (2003) [12].
- Autumn/winter type 3 seems to result mainly from both short and intense precipitation as well as others processes such as snowmelt.
- Summer type 4 resulting from a combination of (i) intense ice-melting that triggers a high, long-lasting discharge baseline, (ii) a first precipitation event of moderate accumulation lasting a few days (D-7 to D-5) and saturating soils, as well as (iii) a second precipitation event of moderate-to-high accumulation (D-1) resulting in the flood peak.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Alfieri, L.; Burek, P.; Feyen, L.; Forzieri, G. Global warming increases the frequency of river floods in Europe. Hydrol. Earth Syst. Sci. 2015, 19, 2247–2260. [Google Scholar] [CrossRef]
- Sillmann, J.; Kharin, V.V.; Zhang, X.; Zwiers, F.W.; Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos. 2013, 118, 1716–1733. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Kanae, S.; Seneviratne, S.I.; Handmer, J.; Nicholls, N.; Peduzzi, P.; Mechler, R.; Bouwer, L.M.; Arnell, N.; Mach, K.; et al. Flood risk and climate change: Global and regional perspectives. Hydrol. Sci. J. 2014, 59, 1–28. [Google Scholar] [CrossRef]
- Mehran, A.; Aghakouchak, A.; Phillipes, T.J. Evaluation of CMIP5 continental precipitation simulation relative to satellite-based gauge-adjusted observations. J. Geophy. Res. 2014, 119, 1695–1707. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Su, B.; Wang, Y.; Wang, G.; Wang, G.; Huang, J.; Jiang, T. Flood risk in a range of spatial perspectives-from global to local scales. Nat. Hazards Earth Syst. Sci. 2019, 19, 1319–1328. [Google Scholar] [CrossRef]
- Dankers, R.; Arnell, N.W.; Clark, D.B.; Falloon, P.D.; Fekete, B.M.; Gosling, S.N.; Heinke, J.; Kim, H.; Masaki, Y.; Satoh, Y.; et al. First look at changes in flood hazard in the Inter-Sectoral impact model intercomparison project ensemble. Proc. Natl. Acad. Sci. USA 2014, 111, 3257–3261. [Google Scholar] [CrossRef] [PubMed]
- Kundzewicz, Z.W.; Krysanova, V.; Dankers, R.; Hirabayashi, Y.; Kanae, S.; Hattermann, F.F.; Huang, S.; Milly, P.C.D.; Stoffel, M.; Driessen, P.P.J.; et al. Differences in flood hazard projections in Europe–their causes and consequences for decision making. Hydrol. Sci. J. 2016, 62, 1–14. [Google Scholar] [CrossRef]
- Hall, J.; Arheimer, B.; Borga, M.; Brázdil, R.; Claps, P.; Kiss, A.; Kjeldsen, T.R.; Kriauciuniene, J.; Kundzewics, Z.W.; Lang, M.; et al. Understanding flood regime changes in Europe: A state-of-the-art assessment. Hydrol. EarthSyst. Sci. 2014, 18, 2735–2772. [Google Scholar] [CrossRef]
- Farnham, D.; Doss-Gollin, J.; Lall, U. Regional extreme precipitations events: Robust inference from credibly simulated GCM variables. Water Resour. Res. 2018, 54, 3809–3824. [Google Scholar] [CrossRef]
- Blöschl, G.; Gaal, L.; Hall, J.; Kiss, A.; Komma, J.; Nester, T.; Parajka, J.; Perdigão, R.A.P.; Plavcova, L.; Rogger, M.; et al. Increasing river floods: Fiction or reality? WIREs Water 2015, 2, 329–344. [Google Scholar]
- Schelf, K.E.; Moradkhani, H.; Lall, U. Atmospheric circulation patterns associated with extreme United States floods identified via machine learning. Sci. Rep. 2019, 9, 7171. [Google Scholar] [CrossRef] [PubMed]
- Merz, R.; Blöschl, G. Regional flood risk—What are the driving processes? Water Resour. Res. 2003, 39, 1340. [Google Scholar]
- Sikorska, A.E.; Viviroli, D.; Seibert, J. Flood-type classification in mountainous catchments using crisp and fuzzy decision trees. Water Resour. Res. 2015, 51, 7959–7976. [Google Scholar] [CrossRef]
- Brunner, M.I.; Viviroli, D.; Sikorska, A.E.; Vannier, O.; Favre, A.C.; Seibert, J. Flood type specific construction of synthetic design hydrographs. Water Resour. Res. 2017, 53, 1390–1406. [Google Scholar] [CrossRef]
- Keller, L.; Rössler, O.; Martius, O.; Weingartner, R. Delineation of flood generating processes and their hydrological response. Hydrol. Process. 2018, 32, 228–240. [Google Scholar] [CrossRef]
- Borga, M.; Boscolo, P.; Zanon, F.; Sangati, M. Hydrometeorological analysis of the 29 august 2003 flash flood in the eastern italian alps. J. Hydrometeorol. 2007, 8, 1049–1067. [Google Scholar] [CrossRef]
- Ruiz-Bellet, J.L.; Balasch, J.C.; Tuset, J.; Barriendos, M.; Mazon, J.; Pino, D. Historical, hydraulic, hydrological and meteorological reconstruction of 1874 Santa Tecla flash floods in Catalonia (NE Iberian Peninsula). J. Hydrol. 2015, 524, 279–295. [Google Scholar] [CrossRef]
- Blöschl, G.; Nester, T.; Komma, J.; Parajka, J.; Perdigão, R.A.P. The June 2013 flood in the Upper Danube Basin, and comparisons with the 2002, 1954 and 1899 floods. Hydrol. Earth Syst. Sci. 2013, 17, 5197–5212. [Google Scholar] [CrossRef]
- Brönnimann, S.; Rohr, C.; Stucki, P.; Summermatter, S.; Bandhauer, M.; Barton, Y.; Fischer, A.; Froidevaux, P.; Germann, U.; Grosjean, M.; et al. 1868—Les inondations qui changèrent la Suisse: Causes, conséquences et leçons pour le future. Geogr. Bernensia 2018, G94, 52. [Google Scholar]
- Stucki, P.; Bandhauer, M.; Heikkilä, U.; Rössler, O.; Zappa, M.; Pfister, L.; Salvisberg, M.; Froidevaux, P.; Martius, O.; Panziera, L.; et al. Reconstruction and simulation of an extreme flood event in the Lago Maggiore catchment in 1868. Nat. Hazards Earth Syst. Sci. 2018, 18, 2717–2739. [Google Scholar] [CrossRef]
- Isotta, F.A.; Frei, C.; Weilguni, V.; Percec Tadic, M.; Lassègues, P.; Rudolf, B.; Pavan, V.; Cacciamani, C.; Antolini, G.; Ratto, S.M.; et al. The climate of daily precipitation in the Alps: Development and analysis of a high-resolution grid dataset from Pan-Alpine rain-gauge data. Int. J. Climatol. 2014, 34, 1657–1675. [Google Scholar] [CrossRef]
- Bender, G. Corriger le Rhône et les Valaisans: Trois siècles de travaux et de débats. Revue de Géographie Alpine 2004, 92, 51–61. [Google Scholar] [CrossRef]
- Hingray, B.; Picouet, C.; Musy, A. Hydrologie 2, une Science pour l’ingénieur; Presses Polytechniques et Universitaires Romandes: Lausanne, Switzerland, 2014; p. 640. [Google Scholar]
- Grandjean, P. La régulation du Lac Léman, hydrology in mountainous regans, I-Hydrological measurements. Water Cycle IAHS Publ. 1990, 190, 769–776. [Google Scholar]
- Evaluation PréliminaireDesRisquesD’inondation Sur Le Bassin Rhône-Méditerranée, Partie IV: Unité De Présentation «Haut-Rhône»; DREAL report; DREAL Auvergne-Rhône-Alpes: Lyon, France, 2011; pp. 208–248.
- Kieffer-Weisse, A. Etude des precipitations exceptionnelles de pas de temps court en relief accident (Alpes françaises). Thèse De Doctorat De L’institut National Polytechnique De Grenoble; INP: Grenoble, France, 1998. [Google Scholar]
- Brassel, K.E.; Reif, D. A procedure to generate thiessen polygons. Geogr. Anal. 1979, 11, 289–303. [Google Scholar] [CrossRef]
- Poli, P.; Hersbach, H.; Dee, D.P.; Berrisford, P.; Simmons, A.J.; Vitart, F.; Laloyaux, P.; Tan, D.G.H.; Peupley, C.; Thépaut, J.N.; et al. ERA-20C: An atmospheric reanalysis of the twentieth century. J. Clim. 2016, 29, 4083–4097. [Google Scholar] [CrossRef]
- Tarasova, L.; Merz, R.; Kiss, A.; Basso, S.; Blöschl, G.; Merz, B.; Viglione, A.; Plötner, A.; Guse, B.; Schumann, A.; et al. Causative classification of rover flood events. WIREs Water 2019, 6, e1353. [Google Scholar] [CrossRef]
- Froidevaux, P.; Schwanbeck, J.; Weingartner, R.; Chevalier, C.; Martius, O. Flood triggering in Switzerland: The role of daily to monthly preceding precipitation. Hydrol. Earth Syst. Sci. 2015, 19, 3903–3924. [Google Scholar] [CrossRef]
- Jain, A.K.; Dubes, R.C. Algorithms for Clustering Data; Prentine-Hall Advanced Reference Series; Prentine-Hall Publish: Englewood, Upper Saddle River, NJ, USA, 1988; p. 320. [Google Scholar]
- Bruynooghe, M. Classification ascendante hiérarchique des grands ensembles de données: Un algorithme rapide fondé sur la construction des voisinages réductibles. Les Cahiers De L’analyse Des Données 1978, 3, 7–33. [Google Scholar]
- Pettitt, A.N. A non-parametric approach to the change-point problem. Appl. Stat. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Meeddat Dreal Rhone-Alpes. Concomitance et impacts des affluents sur le Rhône, rapport de la Dreal Rhône-Alpes et Egis Eau; Egis Eau: Montpellier, France, 2011; p. 139. [Google Scholar]
- Vincent, C.; Soruco, A.; Six, D.; Le Meur, E. Glacier thickning and decay analysis from 50 years of glaciological observations performed on Glacier d’Argentière, Mont Blanc area, France. Annal. Glaciol. 2009, 50, 73–79. [Google Scholar] [CrossRef]
- Vincent, C.; Harter, M.; Gilbert, A.; Berthier, E.; Six, D. Future fluctuations of Mer de Glace, French Alps, assessed using a parameterized model calibrated with past thickness changes. Annals Glaciol. 2014, 55, 15–24. [Google Scholar] [CrossRef]
- Huss, M. Extrapolating glacier mass balance to the mountain-range scale: The european alps 1900–2100. Cryosphere 2012, 6, 713–727. [Google Scholar] [CrossRef]
- Evin, G.; Wilhelm, B.; Jenny, J.P. Flood hazard assessment of the Rhône River revisited with reconstructed discharges from lake sediments. Glob. Planet. Chang. 2019, 172, 114–123. [Google Scholar] [CrossRef]
- Rimbu, N.; Czymzik, M.; Ionita, M.; Lohmann, G.; Brauer, A. Atmospheric circulation patterns associated with the variability of River Ammer floods: Evidence from observed and proxy data. Clim. Past. 2016, 12, 377–385. [Google Scholar] [CrossRef]
- Hoskins, B.J.; McIntyre, M.E.; Robertson, A.W. On the use and significance of isentropic potential vorticity maps. Q. J. R. Meteorol. Soc. 1985, 111, 877–946. [Google Scholar] [CrossRef]
- McIntyre, M.E.; Palmer, T.N. A note on the general concept of wave breaking for Rossby and gravity waves. Pure Appl. Geophys. 1985, 123, 964–975. [Google Scholar] [CrossRef]
Name | Surface Area | Gauge Station at the Outlet of the Catchment | |||||
---|---|---|---|---|---|---|---|
Station Name | Number | Organization Name | River | Starting Year | |||
Main catchment | Upper Rhône River catchment | 10,900 km2 | Rhône@Bognes | 2606 | Federal Office for the Environment (FOEN) | Rhône | 1920 |
The 3 sub-catchments | Geneva catchment | 8000 km2 | Rhône@HDI | 2170 | Federal Office for the Environment (FOEN) | Rhône | 1904 |
Arve catchment | 1900 km2 | Arve@BDM | V1020010 | Federal Office for the Environment (FOEN) | Arve | 1923 | |
Valserine catchment | 1000 km2 | None, discharge estimated as: Rhône@Bognes - (Rhône@HDI + Arve@BDM) |
Reference | Studied Area, Period, and Return Period of Events | Descriptors | Flood Types | |||||
---|---|---|---|---|---|---|---|---|
Rainfall-Induced | Snowmelt-Induced | Glacier-Melt | ||||||
Flash Flood | Short-Rain | Long-Rain | Snow-Melt | Rain-On-Snow | ||||
Merz and Blöschl (2003) [12] | Total of 490 catchments; 3–30,000 km2; Austria; 1971–1997; sub-annual events | Date; one- and three-day rainfall volume; snow water equivalent and snowmelt; runoff coefficient; time of concentration | Summer; RR <90 min duration; very intense response; area <30 km2 | No seasonality; RR of one day duration; fast response; local or regional extent | No seasonality; RR > one day duration; slow response; spatial extent >104 km2 | Spring and summer; no rain needed; medium or slow response; medium spatial extent of floods | Between cold and warm periods; at least moderate rainfall events; from fast to slow response; limited to catchments with snow cover | |
Sikorska et al. (2015) [13] | Nine catchments; 2–939 km2; The Switzerland; 1981–2012; sub-annual events | Date; rainfall intensity; volume and duration; snow water equivalent and snowmelt; glacier melt; antecedent soil moisture | Summer–autumn; RR < half day; local area | No seasonality; RR of maximum one day duration; local or regional extent | No seasonality; RR > one day duration; regional extent | Possibly during the whole year; no rain needed | Possibly during the whole year; rainfall events with at least moderate intensity; limited to catchments with snow cover | Mostly during summer; no rain needed; limited to glaciated catchments |
Brunner et al. (2017) [14] | Total of 39 catchments; 20–1700 km2; Switzerland; 1961–2013; sub-annual events | The same as Sikorska et al. (2015) [13] | RR < half day | RR of maximum one day duration | RR > one day duration | No rain needed | At least moderate rainfall events; limited to catchments with snow cover | Mostly during summer; limited to glaciated catchments |
Keller et al. (2018) [15] | One catchment of 1702 km2; Switzerland; 1961–2014 annual floods | Rainfall duration; rainfall volume;95th quantile of spatial rainfall distribution; snow cover | High intensity and sums; high intensity | High sums | Rain and snow (if snow cover area >40% of catchment area);low intensity and low sums |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raymond, F.; Wilhelm, B.; Anquetin, S. Is Precipitation the Main Trigger of Medium-Magnitude Floods in Large Alpine Catchments? Water 2019, 11, 2507. https://doi.org/10.3390/w11122507
Raymond F, Wilhelm B, Anquetin S. Is Precipitation the Main Trigger of Medium-Magnitude Floods in Large Alpine Catchments? Water. 2019; 11(12):2507. https://doi.org/10.3390/w11122507
Chicago/Turabian StyleRaymond, Florian, Bruno Wilhelm, and Sandrine Anquetin. 2019. "Is Precipitation the Main Trigger of Medium-Magnitude Floods in Large Alpine Catchments?" Water 11, no. 12: 2507. https://doi.org/10.3390/w11122507
APA StyleRaymond, F., Wilhelm, B., & Anquetin, S. (2019). Is Precipitation the Main Trigger of Medium-Magnitude Floods in Large Alpine Catchments? Water, 11(12), 2507. https://doi.org/10.3390/w11122507