Real-Time, Smart Rainwater Storage Systems: Potential Solution to Mitigate Urban Flooding
Abstract
:1. Introduction
2. Real-Time Smart Systems Approach
2.1. Conceptual Outline
2.2. Formulation of Optimization Problem
2.3. Optimization Process
3. Case Study and Experimental Methods
3.1. System Configuration
3.2. Implementation of Simulation-Optimization Approach
3.3. Computational Experiments
3.4. Performance Assessment
4. Results and Discussion
4.1. Performance of Real-Time, Smart System Approach
- (i)
- When the available tank storage exceeds the total rainfall volume, as is the case for the short-duration rainfall events for the 10 m3 tanks for Adelaide (Figure 4b), Melbourne (Figure 4d) and AEPs of 50%, 10%, and 5% for Sydney (Figure 4e), where both approaches result in 100% peak flow reduction (i.e., the solid orange and blue lines are both at 100%), as all of the runoff is able to be retained in the tanks.
- (ii)
- When the available tank storage is only slightly less than the total rainfall volume, in which case the benchmark storage still performs well, as is the case for an AEP of 50% for the long duration events for the 10 m3 tank for Adelaide (Figure 4b) and Melbourne (Figure 4d) (i.e., the dashed orange and blue lines are close together).
- (iii)
- When long duration, extreme events at locations with higher rainfall intensity such as Sydney, are combined with smaller tank volumes (Figure 4e, dashed orange and blue lines), suggesting that the capacity of the tanks is insufficient to mitigate the large volume of runoff generated, even with the real-time smart systems approach.
- (i)
- below ratios of 0.8, peak flow reduction generally drops to below 30%;
- (ii)
- below ratios of 0.6, peak flow reduction generally drops to below 20%;
- (iii)
- below ratios of 0.3, peak flow reduction generally drops to below 10%; and
- (iv)
- below ratios of 0.15, peak flow reduction is generally 0%.
4.2. Reasons for Increased Performance of Real-Time Smart Systems Approach
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Climate | AEP (%) | No Tank System | Benchmark Tanks | Real-Time, Smart Tank Systems |
---|---|---|---|---|
Adelaide | 1 | 30 min | 30 min | 30 min |
2 | 30 min | 30 min | 30 min | |
5 | 30 min | 30 min | 30 min | |
10 | 30 min | 30 min | 60 min | |
50 | 30 min | 60 min | 60 min | |
Melbourne | 1 | 30 min | 30 min | 30 min |
2 | 30 min | 30 min | 30 min | |
5 | 30 min | 30 min | 30 min | |
10 | 30 min | 30 min | 30 min | |
50 | 30 min | 60 min | 60 min | |
Sydney | 1 | 30 min | 30 min | 30 min |
2 | 30 min | 30 min | 30 min | |
5 | 30 min | 30 min | 30 min | |
10 | 30 min | 30 min | 30 min | |
50 | 30 min | 30 min | 30 min |
Climate | AEP (%) | No Tank System | Benchmark Tanks | Real-Time, Smart Tank Systems |
---|---|---|---|---|
Adelaide | 1 | 30 min | 6 h | 6 h |
2 | 30 min | 6 h | 6 h | |
5 | 30 min | 12 h | 6 h | |
10 | 30 min | 12 h | 6 h | |
50 | 30 min | 24 h | 24 h | |
Melbourne | 1 | 30 min | 6 h | 6 h |
2 | 30 min | 6 h | 6 h | |
5 | 30 min | 6 h | 6 h | |
10 | 30 min | 12 h | 12 h | |
50 | 30 min | 24 h | 24 h | |
Sydney | 1 | 30 min | 60 min | 60 min |
2 | 30 min | 60 min | 60 min | |
5 | 30 min | 60 min | 6 h | |
10 | 30 min | 6 h | 6 h | |
50 | 30 min | 6 h | 6 h |
References
- Hoekstra, A.Y.; Buurman, J.; van Ginkel, K.C. Urban water security: A review. Environ. Res. Lett. 2018, 13, 053002. [Google Scholar] [CrossRef]
- Van der Bruggen, B.; Borghgraef, K.; Vinckier, C. Causes of water supply problems in urbanised regions in developing countries. Water Resour. Manag. 2010, 24, 1885–1902. [Google Scholar] [CrossRef]
- Pandey, D.N.; Gupta, A.K.; Anderson, D.M. Rainwater harvesting as an adaptation to climate change. Curr. Sci. 2003, 85, 46–59. [Google Scholar]
- McDonald, R.I.; Weber, K.; Padowski, J.; Flörke, M.; Schneider, C.; Green, P.A.; Gleeson, T.; Eckman, S.; Lehner, B.; Balk, D. Water on an urban planet: Urbanization and the reach of urban water infrastructure. Glob. Environ. Chang. 2014, 27, 96–105. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef]
- Coombes, P.J.; Barry, M.E. The relative efficiency of water supply catchments and rainwater tanks in cities subject to variable climate and the potential for climate change. Australas. J. Water Resour. 2008, 12, 85–100. [Google Scholar] [CrossRef]
- Newman, J.; Dandy, G.; Maier, H. Multiobjective optimization of cluster-scale urban water systems investigating alternative water sources and level of decentralization. Water Resour. Res. 2014, 50, 7915–7938. [Google Scholar] [CrossRef]
- Burns, M.J.; Fletcher, T.D.; Duncan, H.P.; Hatt, B.E.; Ladson, A.R.; Walsh, C.J. The performance of rainwater tanks for stormwater retention and water supply at the household scale: An empirical study. Hydrol. Process. 2015, 29, 152–160. [Google Scholar] [CrossRef]
- Paton, F.; Maier, H.; Dandy, G. Including adaptation and mitigation responses to climate change in a multiobjective evolutionary algorithm framework for urban water supply systems incorporating ghg emissions. Water Resour. Res. 2014, 50, 6285–6304. [Google Scholar] [CrossRef]
- Paton, F.L.; Dandy, G.C.; Maier, H.R. Integrated framework for assessing urban water supply security of systems with non-traditional sources under climate change. Environ. Model. Softw. 2014, 60, 302–319. [Google Scholar] [CrossRef]
- Beh, E.H.; Maier, H.R.; Dandy, G.C. Adaptive, multiobjective optimal sequencing approach for urban water supply augmentation under deep uncertainty. Water Resour. Res. 2015, 51, 1529–1551. [Google Scholar] [CrossRef]
- Beh, E.H.; Zheng, F.; Dandy, G.C.; Maier, H.R.; Kapelan, Z. Robust optimization of water infrastructure planning under deep uncertainty using metamodels. Environ. Model. Softw. 2017, 93, 92–105. [Google Scholar] [CrossRef]
- Ahiablame, L.M.; Engel, B.A.; Chaubey, I. Effectiveness of low impact development practices in two urbanized watersheds: Retrofitting with rain barrel/cistern and porous pavement. J. Environ. Manag. 2013, 119, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Fletcher, T.; Duncan, H.; Bergmann, D.; Breman, J.; Burns, M. Improving the multi-objective performance of rainwater harvesting systems using real-time control technology. Water 2018, 10, 147. [Google Scholar] [CrossRef]
- Campisano, A.; Modica, C. Rainwater harvesting as source control option to reduce roof runoff peaks to downstream drainage systems. J. Hydroinform. 2015, 18, 23–32. [Google Scholar] [CrossRef]
- Coombes, P.; Barry, M. Determination of available storage in rainwater tanks prior to storm events. Proc. Water Down Under 2008, 2008, 191. [Google Scholar]
- Gilroy, K.L.; McCuen, R.H. Spatio-temporal effects of low impact development practices. J. Hydrol. 2009, 367, 228–236. [Google Scholar] [CrossRef]
- Schubert, J.E.; Burns, M.J.; Fletcher, T.D.; Sanders, B.F. A framework for the case-specific assessment of green infrastructure in mitigating urban flood hazards. Adv. Water Resour. 2017, 108, 55–68. [Google Scholar] [CrossRef]
- Lund, N.S.V.; Borup, M.; Madsen, H.; Mark, O.; Arnbjerg-Nielsen, K.; Mikkelsen, P.S. Integrated stormwater inflow control for sewers and green structures in urban landscapes. Nat. Sustain. 2019, 2, 1003–1010. [Google Scholar] [CrossRef]
- Burns, M.J.; Fletcher, T.D.; Walsh, C.J.; Ladson, A.R.; Hatt, B.E. Hydrologic shortcomings of conventional urban stormwater management and opportunities for reform. Landsc. Urban Plan. 2012, 105, 230–240. [Google Scholar] [CrossRef]
- Wasko, C.; Sharma, A. Steeper temporal distribution of rain intensity at higher temperatures within australian storms. Nat. Geosci. 2015, 8, 527. [Google Scholar] [CrossRef]
- Pezzaniti, D.; Argue, J.R.; Johnston, L. Detention/retention storages for peak flow reduction in urban catchments: Effects of spatial deployment of storages. Australas. J. Water Resour. 2003, 7, 131–138. [Google Scholar] [CrossRef]
- Oberascher, M.; Zischg, J.; Kastlunger, U.; Schöpf, M.; Kinzel, C.; Zingerle, C.; Rauch, W.; Sitzenfrei, R. Advanced rainwater harvesting through smart rain barrels. In World Environmental and Water Resources Congress 2019: Watershed Management, Irrigation and Drainage, and Water Resources Planning and Management, 2019; American Society of Civil Engineers: Reston, VA, USA, 2019; pp. 75–82. [Google Scholar]
- Behzadian, K.; Kapelan, Z.; Mousavi, S.J.; Alani, A. Can smart rainwater harvesting schemes result in the improved performance of integrated urban water systems? Environ. Sci. Pollut. Res. 2018, 25, 19271–19282. [Google Scholar] [CrossRef] [PubMed]
- Campisano, A.; Butler, D.; Ward, S.; Burns, M.J.; Friedler, E.; DeBusk, K.; Fisher-Jeffes, L.N.; Ghisi, E.; Rahman, A.; Furumai, H. Urban rainwater harvesting systems: Research, implementation and future perspectives. Water Res. 2017, 115, 195–209. [Google Scholar] [CrossRef]
- Burns, M.J.; Schubert, J.E.; Fletcher, T.D.; Sanders, B.F. Testing the impact of at-source stormwater management on urban flooding through a coupling of network and overland flow models. Wiley Interdiscip. Rev. Water 2015, 2, 291–300. [Google Scholar] [CrossRef]
- Lee, E.H. Advanced operating technique for centralized and decentralized reservoirs based on flood forecasting to increase system resilience in urban watersheds. Water 2019, 11, 1533. [Google Scholar] [CrossRef]
- Vaes, G.; Berlamont, J. The effect of rainwater storage tanks on design storms. Urban Water 2001, 3, 303–307. [Google Scholar] [CrossRef]
- Di Matteo, M.; Liang, R.; Maier, H.R.; Thyer, M.A.; Simpson, A.R.; Dandy, G.C.; Ernst, B. Controlling rainwater storage as a system: An opportunity to reduce urban flood peaks for rare, long duration storms. Environ. Model. Softw. 2019, 111, 34–41. [Google Scholar] [CrossRef]
- Maier, H.R.; Kapelan, Z.; Kasprzyk, J.; Kollat, J.; Matott, L.S.; Cunha, M.C.; Dandy, G.C.; Gibbs, M.S.; Keedwell, E.; Marchi, A. Evolutionary algorithms and other metaheuristics in water resources: Current status, research challenges and future directions. Environ. Model. Softw. 2014, 62, 271–299. [Google Scholar] [CrossRef]
- Maier, H.R.; Razavi, S.; Kapelan, Z.; Matott, L.S.; Kasprzyk, J.; Tolson, B.A. Introductory overview: Optimization using evolutionary algorithms and other metaheuristics. Environ. Model. Softw. 2018. [Google Scholar] [CrossRef]
- Fortin, F.-A.; Rainville, F.-M.D.; Gardner, M.-A.; Parizeau, M.; Gagné, C. Deap: Evolutionary algorithms made easy. J. Mach. Learn. Res. 2012, 13, 2171–2175. [Google Scholar]
- McDonnell, B.; Tryby, M.; Montestruque, L.; Kertesz, R.; Myers, F. Swmm5 Application Programming Interface and Pyswmm: A Python Interfacing Wrapper. In Proceedings of the International Conference on Water Management Modeling, Toronto, ON, Canada, 1–2 March 2017. [Google Scholar]
- Sadler, J.M.; Goodall, J.L.; Behl, M.; Morsy, M.M. In Leveraging open source software and parallel computing for model predictive control simulation of urban drainage systems using epa-swmm5 and python. In Proceedings of the International Conference on Urban Drainage Modelling, Palermo, Italy, 23–26 September 2018; Springer: Berlin/Heidelberg, Germany, 2008; pp. 988–992. [Google Scholar]
- Paseka, S.; Kapelan, Z.; Marton, D. Multi-objective optimization of resilient design of the multipurpose reservoir in conditions of uncertain climate change. Water 2018, 10, 1110. [Google Scholar] [CrossRef]
- Di Matteo, M.; Dandy, G.C.; Maier, H.R. Multiobjective optimization of distributed stormwater harvesting systems. J. Water Resour. Plan. Manag. 2017, 143. [Google Scholar] [CrossRef]
- Li, J.; Thyer, M.; Lambert, M.; Kuzera, G.; Metcalfe, A. Incorporating seasonality into event-based joint probability methods for predicting flood frequency: A hybrid causative event approach. J. Hydrol. 2016, 533, 40–52. [Google Scholar] [CrossRef]
- Australian Bureau of Meteorology Design Rainfall System. Available online: http://www.bom.gov.au/water/designRainfalls/revised-ifd/ (accessed on 10 August 2019).
- Ball, J.; Babister, M.; Nathan, R.; Weinmann, P.; Weeks, W.; Retallick, M.; Testoni, I. Australian Rainfall and Runoff-A Guide to Flood Estimation; Australia Government: Canberra, Australia, 2019.
Design Parameter | Value |
---|---|
Orifice opening percentage (%) | Variable |
Tank height (m) | 2 |
Roof catchment size (m2) | 200 |
Percentage of roof connected to tank (%) | 100 |
Initial loss (mm) | 0 |
Number of roofs | 2 |
Number of tanks | 2 |
Parameter | Value |
---|---|
Location in Australia | Adelaide, South Australia Melbourne, Victoria Sydney, New South Wales |
Storm frequency (% AEP) | 50, 10, 5, 2, 1 |
Storm duration | 30 min, 1 h, 6 h, 12 h, 24 h |
Storm pattern | ten burst patterns |
) | 2, 10 |
Orifice opening percentage (%) | 0% (Fully closed), 10%, …, 90%, 100% (Fully open) |
Orifice diameter | 20 mm |
Control update time step | 5 min for 30 min, 1 h storms 1 h for 6 h, 12 h, 24 h storms |
Duration | 30 min | 1 h | 6 h | 12 h | 24 h |
---|---|---|---|---|---|
Adelaide | 67.4 | 43.5 | 12.3 | 7.2 | 4.1 |
Melbourne | 78.3 | 48.6 | 13.5 | 8.54 | 5.46 |
Sydney | 118 | 76.7 | 26 | 18 | 12.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, R.; Di Matteo, M.; Maier, H.R.; Thyer, M.A. Real-Time, Smart Rainwater Storage Systems: Potential Solution to Mitigate Urban Flooding. Water 2019, 11, 2428. https://doi.org/10.3390/w11122428
Liang R, Di Matteo M, Maier HR, Thyer MA. Real-Time, Smart Rainwater Storage Systems: Potential Solution to Mitigate Urban Flooding. Water. 2019; 11(12):2428. https://doi.org/10.3390/w11122428
Chicago/Turabian StyleLiang, Ruijie, Michael Di Matteo, Holger R. Maier, and Mark A. Thyer. 2019. "Real-Time, Smart Rainwater Storage Systems: Potential Solution to Mitigate Urban Flooding" Water 11, no. 12: 2428. https://doi.org/10.3390/w11122428
APA StyleLiang, R., Di Matteo, M., Maier, H. R., & Thyer, M. A. (2019). Real-Time, Smart Rainwater Storage Systems: Potential Solution to Mitigate Urban Flooding. Water, 11(12), 2428. https://doi.org/10.3390/w11122428