Magnitude and Frequency of Temperature and Precipitation Extremes and the Associated Atmospheric Circulation Patterns in the Yellow River Basin (1960–2017), China
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Trend Analysis
2.3. Correlation Analysis
3. Results
3.1. Variation of the Extreme Precipitation Indices
3.2. Variation of the Extreme Temperature Indices
3.3. Relationship between the Extreme Climatic Indices and the ACPs
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kunkel, K.E.; Pielke, R.A.; Changnon, S.A. Temporal fluctuations in weather and climate extremes that cause economic and human health impacts: A review. Bull. Am. Meteorol. Soc. 1999, 80, 1077–1098. [Google Scholar] [CrossRef]
- Easterling, D.R.; Evans, J.L.; Groisman, P.Y.; Karl, T.R.; Kunkel, K.E.; Ambenje, P. Observed variability and trends in extreme climate events: A brief review. Bull. Am. Meteorol. Soc. 2000, 81, 417–425. [Google Scholar] [CrossRef]
- Wuebbles, D.; Meehl, G.; Hayhoe, K.; Karl, T.R.; Kunkel, K.; Santer, B.; Fu, R. CMIP5 climate model analyses: Climate extremes in the United States. Bull. Am. Meteorol. Soc. 2014, 95, 571–583. [Google Scholar] [CrossRef]
- Gao, T.; Wang, H.L. Trends in precipitation extremes over the yellow river basin in north china: Changing properties and causes. Hydrol. Process. 2017, 31, 2412–2428. [Google Scholar] [CrossRef]
- Cinco, T.A.; Guzman, R.G.D.; Hilario, F.D.; Wilson, D.M. Long-term trends and extremes in observed daily precipitation and near surface air temperature in the Philippines for the period 1951–2010. Atmos. Res. 2015, 14, 12–26. [Google Scholar] [CrossRef]
- Katz, R.W.; Brown, B.G. Extreme events in a changing climate: Variability is more important than averages. Clim. Chang. 1992, 21, 289–302. [Google Scholar] [CrossRef]
- Plummer, N.; Salinger, M.J.; Nicholis, N.; Suppiah, R.; Hennessy, K.J.; Leighton, R.M.; Trewin, B.; Page, C.M.; Lough, J.M. Changes in climate extremes over the Australian region and New Zealand during the twentieth century. Clim. Chang. 1999, 42, 183–202. [Google Scholar] [CrossRef]
- Ingram, W. Extreme precipitation: Increases all round. Nat. Clim. Chang. 2016, 6, 443–444. [Google Scholar] [CrossRef]
- IPCC. Climate change 2013: The physical science basis. In Working Group I Contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report (AR5)—Changes to the Underlying Scientifc/Technical Assessment; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Zhang, X.Z.; Li, P.; Li, D.S. spatiotemporal variations of precipitation in the southern part of the Heihe river basin (China), 1984–2014. Water 2018, 10, 410. [Google Scholar] [CrossRef]
- Donat, M.G.; Lowry, A.L.; Alexander, L.V.; O’Gorman, P.A.; Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Chang. 2016, 6, 508–513. [Google Scholar] [CrossRef]
- Zhang, Y.G.; Su, F.G.; Hao, Z.C.; Xu, C.Y.; Yu, Z.B.; Wang, L.; Tong, K. Impact of projected climate change on the hydrology in the headwaters of the Yellow River basin. Hydrol. Process. 2015, 29, 4379–4397. [Google Scholar] [CrossRef]
- Ozer, P.; Mahamoud, A. Recent extreme precipitation and temperature changes in Djibouti city (1966–2011). J. Climatol. 2013, 2013, 1–8. [Google Scholar] [CrossRef]
- Diffenbaugh, N.; Pal, J.; Trapp, R.; Giorgi, F. Fine-scale processes regulate the response of extreme events to global climate change. Proc. Natl. Acad. Sci. USA 2005, 102, 15774–15778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Chen, Y.; Xun, S.; Lai, D.; Fan, Y.; Li, Z. Changes in daily climate extremes in the arid area of northwestern China. Theor. Appl. Climatol. 2013, 112, 15–28. [Google Scholar] [CrossRef]
- Liu, W.L.; Zhang, M.J.; Wang, S.J.; Wang, B.L.; Li, F.; Che, Y.J. Changes in precipitation extremes over Shaanxi province, northwestern China, during 1960–2011. Quatern. Int. 2013, 313–314, 118–129. [Google Scholar] [CrossRef]
- Gu, X.H.; Zhang, Q.; Singh, V.P.; Shi, P.J. Changes in magnitude and frequency of heavy precipitation across China and its potential links to summer temperature. J. Hydrol. 2017, 547, 718–731. [Google Scholar] [CrossRef] [Green Version]
- Guan, Y.H.; Zhang, X.C.; Zheng, F.L.; Wang, B. Trends and variability of daily temperature extremes during 1960–2012 in the Yangtze River basin, China. Glob. Planet. Chang. 2015, 124, 79–94. [Google Scholar] [CrossRef]
- Wang, S.J.; Zhang, M.J.; Sun, M.P.; Wang, B.L.; Li, X.F. Changes in precipitation extremes in alpine areas of the Chinese Tianshan Mountains, central Asia, 1961–2011. Quatern. Int. 2013, 311, 97–107. [Google Scholar] [CrossRef]
- Li, C.X.; Tian, Q.H.; Yu, R.; Zhou, B.Q.; Xia, J.J.; Burke, C.; Dong, B.W. Attribution of extreme precipitation in the lower reaches of the Yangtze River during May 2016. Environ. Res. Lett. 2018, 13, 14–15. [Google Scholar] [CrossRef]
- Zhang, X.B.; Aguilar, E.; Sensoy, S. Trends in Middle East climate extreme indices from 1950 to 2003. J. Geophys. Res. 2005, 110, 3159–3172. [Google Scholar] [CrossRef]
- New, M.; Hewitson, B.; Stephenson, D.B.; Tsiga, A.; Kruger, A.; Manhique, A.; Gomez, B.; Coelho, C.A.S.; Masisi, D.N.; Kululanga, E.; et al. Evidence of trends in daily climate extremes over Southern and West Africa. J. Geophys. Res. Atmos. 2006, 111, 3007–3021. [Google Scholar] [CrossRef]
- Perkins, S.E.; Moise, A.; Whetton, P.; Katzfey, J. Regional changes of climate extremes over Australia-a comparison of regional dynamical downscaling and global climate model simulations. Int. J. Climatol. 2014, 34, 3456–3478. [Google Scholar] [CrossRef]
- Wang, H.J.; Pan, Y.P.; Chen, Y.N.; Ye, Z.W. Linear trend and abrupt changes of climate indices in the arid region of northwestern China. Atmos. Res. 2017, 196, 108–118. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W. Extreme weather events and their consequences. Pap. Glob. Chang. Igbp. 2016, 23, 59–69. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, Z.F.; Cui, B.S. Spatial and temporal variability of annual precipitation during 1961–2006 in Yellow River basin, China. J. Hydrol. 2008, 361, 330–338. [Google Scholar] [CrossRef]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef]
- Zhao, F.F.; Xu, Z.X.; Huang, J.X.; Li, J.Y. Monotonic trend and abrupt changes for major climate variables in the headwater catchment of the Yellow River basin. Hydrol. Process. 2008, 22, 4587–4599. [Google Scholar] [CrossRef]
- Yang, Z.F.; Liu, Q. Response of Streamflow to Climate Changes in the Yellow River Basin, China. J. Hydrometeorol. 2011, 12, 1113–1126. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers of Climate Change 2007, the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Dong, Q.; Chen, X.; Chen, T.X. Characteristics and changes of extreme precipitation in the Yellow–Huaihe and Yangtze–Huaihe Rivers basins, China. J. Clim. 2011, 24, 3781–3795. [Google Scholar] [CrossRef]
- Irannezhad, M.; Chen, D.; Kløve, B.; Moradkhani, H. Analysing the variability and trends of precipitation extremes in Finland and their connection to atmospheric circulation patterns. Int. J. Climatol. 2017, 37, 1053–1066. [Google Scholar] [CrossRef]
- Wibig, J.; Piotrowski, P. Impact of the air temperature and atmospheric circulation on extreme precipitation in Poland. Int. J. Climatol. 2018, 38, 4533–4549. [Google Scholar] [CrossRef]
- Haylock, M.; Goodess, C. Interannual variability of European extreme winter rainfall and links with mean large-scale circulation. Int. J. Climatol. 2004, 24, 759–776. [Google Scholar] [CrossRef]
- Toreti, A.; Xoplaki, E.; Maraun, D.; Kuglitsch, F.G.; Wanner, H.; Luterbacher, J. Characterisation of extreme winter precipitation in mediterranean coastal sites and associated anomalous atmospheric circulation patterns. Nat. Hazards Earth Syst. Sci. 2010, 10, 1037–1050. [Google Scholar] [CrossRef]
- She, D.X.; Xia, J.; Zhang, D.; Ye, A.Z.; Sood, A. Regional extreme dry-spell frequency analysis using the L-moments method in the middle reaches of the Yellow River basin, China. Hydrol. Processes 2014, 28, 4694–4707. [Google Scholar] [CrossRef]
- Liang, K.; Liu, S.; Bai, P.; Nie, R. The Yellow River basin becomes wetter or drier? The case as indicated by mean precipitation and extremes during 1961–2012. Theor. Appl. Climatol. 2015, 119, 701–722. [Google Scholar] [CrossRef]
- Duan, W.L.; He, B.; Takara, K.; Luo, P.P.; Hu, M.C.; Nor, E.A.; Daniel, N. Changes of precipitation amounts and extremes over Japan between 1901 and 2012 and their connection to climate indices. Clim. Dynam. 2015, 45, 2273–2292. [Google Scholar] [CrossRef]
- Rusticucci, M.; Barrucand, M.; Collazo, S. Temperature extremes in the Argentina central region and their monthly relationship with the mean circulation and ENSO phases. Int. J. Climatol. 2017, 37, 3003–3017. [Google Scholar] [CrossRef]
- Hoerling, M.; Eischeid, J.; Perlwitz, J.; Quan, X.W.; Wolter, K.; Cheng, L.Y. Characterizing recent trends in U.S. heavy precipitation. J. Clim. 2016, 29, 2313–2332. [Google Scholar] [CrossRef]
- Mallakpour, I.; Villarini, G. Investigating the relationship between the frequency of flooding over the central United States and large-scale climate. Adv. Water Resour. 2016, 92, 159–171. [Google Scholar] [CrossRef] [Green Version]
- Yue, Y.; Shen, S.H.; Wang, Q. Trend and variability in droughts in northeast China based on the reconnaissance drought index. Water 2018, 10, 318. [Google Scholar] [CrossRef]
- Deng, Y.; Jiang, W.G.; He, B.; Chen, Z.; Jia, K. Change in intensity and frequency of extreme precipitation and its possible teleconnection with large-scale climate index over the China from 1960 to 2015. J. Geophys. Res. Atmos. 2018, 123, 2068–2081. [Google Scholar] [CrossRef]
- Rong, X.Y.; Zhang, R.H.; Li, T. Impacts of Atlantic sea surface temperature anomalies on Indo-East Asian summer monsoon-ENSO relationship. Chin. Sci. Bull. 2010, 55, 1397–1408. [Google Scholar] [CrossRef]
- Xiao, M.Z.; Zhang, Q.; Singh, V.P. Influences of enso, nao, iod and pdo on seasonal precipitation regimes in the Yangtze River basin, China. Int. J. Climatol. 2015, 35, 3556–3567. [Google Scholar] [CrossRef]
- Zhang, K.X.; Qian, X.Q.; Liu, P.X.; Xu, Y.H.; Cao, L.G.; Hao, Y.P. Variation characteristics and influences of climate factors on aridity index and its association with AO and ENSO in northern China from 1961 to 2012. Theore. Appl. Climatol. 2017, 130, 523–533. [Google Scholar] [CrossRef]
- Wang, H.J.; Yang, Z.S.; Saito, Y.; Liu, J.P.; Sun, X.X. Interannual and seasonal variation of the Huanghe (Yellow River) water discharge over the past 50 years: Connections to impacts from ENSO events and dams. Glob. Planet. Chang. 2006, 50, 212–225. [Google Scholar] [CrossRef]
- Zhang, X.B.; Yang, F. RClimDex (1.0) User Manual. Available online: http://etccdi. Pacific climate.org/software.shtml (accessed on 10 September 2004).
- Choi, G.; Collins, D.; Ren, G.Y.; Trewin, B.; Baldi, M.; Fukuda, Y.; Afzaal, M.; Pianmana, T.; Gomboluudev, P.; Huong, P.T.T.; et al. Changes in means and extreme events of temperature and precipitation in the Asia-Pacific Network region, 1955–2007. Int. J. Climatol. 2009, 29, 1906–1925. [Google Scholar] [CrossRef]
- Vincent, L.A.; Aguilar, E.; Saindou, M.; Hassane, A.F.; Jumaux, G.; Roy, D.; Booneeady, P.; Virasami, R.; Randriamarolaza, L.Y.A.; Faniriantsoa, F.R.; et al. Observed trends in indices of daily and extreme temperature and precipitation for the countries of the western Indian Ocean, 1961–2008. J. Geophys. Res. Atmos. 2011, 116, 521–541. [Google Scholar] [CrossRef]
- Yu, L.J.; Sui, C.J.; Lenschow, D.H.; Zhou, M.Y. The relationship between wintertime extreme temperature events north of 60°N and large scale atmospheric circulations. Int. J. Climatol. 2017, 37, 597–611. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, C.Y.; Gemmer, M.; Chen, Y.D.; Liu, C.L. Changing properties of precipitation concentration in the Pearl river basin, China. Stoch. Env. Res. Risk A 2009, 23, 377–385. [Google Scholar] [CrossRef]
- Zhang, K.X.; Pan, S.M.; Cao, L.G.; Wang, Y.; Zhao, Y.F.; Zhang, W. Spatial distribution and temporal trends in precipitation extremes over the Hengduan Mountains region, China, from 1961 to 2012. Quatern. Int. 2014, 349, 346–356. [Google Scholar] [CrossRef]
- Guan, Y.H.; Zheng, F.L.; Zhang, X.C.; Wang, B. Trends and variability of daily precipitation and extremes during 1960–2012 in the Yangtze River basin, China. Int. J. Climatol. 2016, 37, 1282–1298. [Google Scholar] [CrossRef]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein, A.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 2006, 111, 1042–1063. [Google Scholar] [CrossRef]
- Li, Z.X.; He, Y.Q.; Wang, P.Y.; Theakstone, W.H.; An, W.L.; Wang, X.F. Changes of daily climate extremes in southwestern China during 1961–2008. Glob. Planet. Chang. 2012, 80–81, 255–272. [Google Scholar] [CrossRef]
- Pei, F.S.; Wu, C.J.; Liu, X.P.; Hu, Z.L.; Xia, Y.; Liu, L.A.; Wang, K.; Zhou, Y. Detection and attribution of extreme precipitation changes from 1961 to 2012 in the Yangtze River Delta in China. Catena 2018, 169, 183–194. [Google Scholar] [CrossRef]
- Gao, T.; Xie, L.; Liu, B. Association of extreme precipitation over the Yangtze River basin with global air-sea heat fluxes and moisture transport. Int. J. Climatol. 2015, 36, 3020–3038. [Google Scholar] [CrossRef]
- Tian, Q.; Prange, M.; Merkel, U. Precipitation and temperature changes in the major chinese river basins during 1957–2013 and links to sea surface temperature. J. Hydrol. 2016, 536, 208–221. [Google Scholar] [CrossRef]
- Yu, L.; Rienecker, M.M. Evidence of an extra-tropical atmospheric influence during the onset of the 1997–98 El Nino. Geophys. Res. Lett. 1998, 25, 3537–3540. [Google Scholar] [CrossRef]
- Zhong, K.Y.; Zheng, F.L.; Wu, H.Y.; Qin, C.; Xu, X.M. Dynamic changes in temperature extremes and their association with atmospheric circulation patterns in the Songhua River Basin, China. Atmos. Res. 2017, 190, 77–88. [Google Scholar] [CrossRef]
- Shi, J.; Cui, L.L.; Ma, Y.; Du, H.Q.; Wen, K.M. Trends in temperature extremes and their association with circulation patterns in China during 1961–2015. Atmos. Res. 2018, 212, 259–272. [Google Scholar] [CrossRef]
- Wang, W.G.; Shao, Q.X.; Yang, T.; Peng, Z.Z.; Yu, Z.B.; Taylor, J.; Xing, W.Q.; Zhao, C.P.; Sun, F.C. Changes in daily temperature and precipitation extremes in the Yellow River Basin, China. Stoch. Env. Res. Risk A 2013, 27, 401–421. [Google Scholar] [CrossRef]
Index (Unit) | Description Name | Definition |
---|---|---|
FD (days) | Frost days | Annual count of days when TN < 0 °C |
SU (days) | Summer days | Annual count of days when TX > 25 °C |
TXx (°C) | Hottest day | The maximum value of TX records |
TNn (°C) | Coldest night | The minimum value of TN records |
TN10p (days) | Cold nights | Percentage of days when TN < 10th percentile |
TX10p (days) | Cold days | Percentage of days when TX < 10th percentile |
TN90p (days) | Warm nights | Percentage of days when TN > 90th percentile |
TX90p (days) | Warm days | Percentage of days when TX > 90th percentile |
CDD (days) | Consecutive dry days | Maximum number of consecutive days with RR < 1mm |
RX1day (mm) | Maximum 1-day precipitation | Monthly maximum 1-day precipitation |
RX5day (mm) | Maximum 5-day precipitation | Monthly maximum consecutive 5-day precipitation |
R10mm (days) | Heavy precipitation days | Annual count of days when RR ≥ 10mm |
R25mm (days) | Heaviest precipitation days | Annual count of days when RR ≥ 25mm |
R95p (mm) | Very wet day precipitation | Annual total precipitation when RR > 95th percentile of 1960–2017 daily rainfall |
R99p (mm) | Extremely wet day precipitation | Annual total precipitation when RR > 99th percentile of 1960–2017 daily rainfall |
SDII (mm/day) | Simple precipitation intensity index | Average precipitation on wet days |
Index | YRB | Range | Positive | Negative | Stationary | Upper | Middle | Lower |
---|---|---|---|---|---|---|---|---|
CDD | −0.267 | −0.880–0.235 | 24.2% | 68.2% (7.6%) | 7.6% | −0.287 ** | −0.090 | −0.077 |
R10mm | 0.003 | −0.091–0.068 | 15.2% (3%) | 25.8% | 59.1% | 0.005 | −0.001 | −0.001 |
R25mm | 0.003 | −0.029–0.000 | 0 | 1.5% (1.5%) | 98.5% | 0.000 | 0.003 | 0.000 |
R95p | 0.065 | −1.372–0.880 | 39.4% (1.5%) | 47% (1.5%) | 13.6% | −0.022 | −0.033 | −0.044 |
R99p | 0.008 | −0.011–0.025 | 1.5% | 1.5% | 97% | 0.048 | −0.046 | 0.004 |
RX1day | −0.029 | −0.292–0.215 | 47% (1.5%) | 53% | 0 | 0.012 | −0.043 | 0.019 |
RX5day | −0.046 | −0.380–0.410 | 40.9% (1.5%) | 59.1% | 0 | −0.008 | −0.041 | −0.041 |
SDII | 0.006 | −0.020–0.029 | 63.6% (4.5%) | 22.7% (3.0%) | 13.6% | 0.002 | 0.006 | 0.007 |
Index | YRB | Range | Positive | Negative | Stationary | Upper | Middle | Lower |
---|---|---|---|---|---|---|---|---|
FD | −0.372 ** | −0.762–0.250 | 4.5% | 93.9% (92.4%) | 1.5% | −0.372 ** | −0.381 ** | −0.411 ** |
SU | 0.216 ** | 0.000–0.667 | 83.3% (71.2%) | 0 | 16.7% | 0.158 ** | 0.256 ** | 0.208 ** |
TN10p | −0.359 ** | −0.702–0.365 | 7.6% | 92.4% (92.4%) | 0 | −0.361 ** | −0.344 ** | −0.337 ** |
TN90p | 0.332 ** | −0.198–0.659 | 97% (90.9%) | 3% | 0 | 0.345 ** | 0.340 ** | 0.334 ** |
TNn | 0.045 ** | −0.077–0.146 | 86.4% (62.1%) | 9.1% (3%) | 4.5% | 0.052 ** | 0.043 ** | 0.044 ** |
TXx | 0.018 * | −0.029–0.053 | 84.8% (45.5%) | 12.1% (1.5%) | 3% | 0.034 ** | 0.014 * | 0.002 |
TX10p | −0.200 ** | −3.797–0.088 | 1.5% | 98.5% (92.4%) | 0 | −0.206 ** | −0.212 ** | −0.142 ** |
TX90p | 0.229 ** | −0.040–0.479 | 90.9% (86.4%) | 9.1% | 0 | 0.258 ** | 0.239 ** | 0.116 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, X.; Zhang, S.; Zhou, J.; Cao, J.; Jiao, L.; Zhang, Z.; Liu, Y. Magnitude and Frequency of Temperature and Precipitation Extremes and the Associated Atmospheric Circulation Patterns in the Yellow River Basin (1960–2017), China. Water 2019, 11, 2334. https://doi.org/10.3390/w11112334
Dong X, Zhang S, Zhou J, Cao J, Jiao L, Zhang Z, Liu Y. Magnitude and Frequency of Temperature and Precipitation Extremes and the Associated Atmospheric Circulation Patterns in the Yellow River Basin (1960–2017), China. Water. 2019; 11(11):2334. https://doi.org/10.3390/w11112334
Chicago/Turabian StyleDong, Xiaogang, Shiting Zhang, Junju Zhou, Jianjun Cao, Liang Jiao, Zhiyang Zhang, and Yang Liu. 2019. "Magnitude and Frequency of Temperature and Precipitation Extremes and the Associated Atmospheric Circulation Patterns in the Yellow River Basin (1960–2017), China" Water 11, no. 11: 2334. https://doi.org/10.3390/w11112334
APA StyleDong, X., Zhang, S., Zhou, J., Cao, J., Jiao, L., Zhang, Z., & Liu, Y. (2019). Magnitude and Frequency of Temperature and Precipitation Extremes and the Associated Atmospheric Circulation Patterns in the Yellow River Basin (1960–2017), China. Water, 11(11), 2334. https://doi.org/10.3390/w11112334