Quantify Piston and Preferential Water Flow in Deep Soil Using Cl− and Soil Water Profiles in Deforested Apple Orchards on the Loess Plateau, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Soil Sampling and Analysis
2.3. Calculation of the Replenishment of Depleted Deep Soil Water
2.4. Quantify Piston Flow and Preferential Flow Using Measured Cl- and Soil Water Profiles
3. Results
3.1. The Evolution of Cl− Profiles following Deforestation
3.2. The Amount of Piston Flow Tracked by Cl− Migration
3.3. The Amount of Preferential Flow Derived from Soil Water Increase below the Cl− Front
4. Discussion
4.1. Why Do Piston and Preferential Water Flow Simultaneously Appear in the Deep Strata of Loess during the Water Recovery Process?
4.2. The Implications of Two Different Flow Patterns in Deep Soil on Ecohydrological Processes
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Evaristo, J.; McDonnell, J.J. Global analysis of streamflow response to forest management. Nature 2019, 570, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, M.; Si, B.; Feng, H. Deep rooted apple trees decrease groundwater recharge in the highland region of the Loess Plateau, China. Sci. Total Environ. 2017, 622, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Si, B.; Li, M. Rooting depth controls potential groundwater recharge on hillslopes. J. Hydrol. 2018, 564, 164–174. [Google Scholar] [CrossRef]
- Beven, K.; Germann, P. Macropores and water flow in soils. Water Resour. Res. 1982, 18, 1311–1325. [Google Scholar] [CrossRef] [Green Version]
- Andreini, M.; Steenhuis, T. Preferential paths of flow under conventional and conservation tillage. Geoderma 1990, 46, 85–102. [Google Scholar] [CrossRef]
- Zimmermann, U.; Muennich, K.O.; Roether, W. Downward movement of soil moisture traced by means of hydrogen isotopes. Geophys. Monogr. 1967, 11, 28–36. [Google Scholar]
- Clothier, B.E.; Green, S.R.; Deurer, M. Preferential flow and transport in soil: Progress and prognosis. Eur. J. Soil Sci. 2007, 59, 2–13. [Google Scholar] [CrossRef]
- Jarvis, N.; Koestel, J.; Larsbo, M. Understanding preferential flow in the vadose zone: Recent advances and future prospects. Vadose Zone J. 2016, 15. [Google Scholar] [CrossRef]
- Xiang, W.; Si, B.C.; Biswas, A.; Li, Z. Quantifying dual recharge mechanisms in deep unsaturated zone of Chinese Loess Plateau using stable isotopes. Geoderma 2019, 337, 773–781. [Google Scholar] [CrossRef]
- Gao, X.; Wu, P.; Zhao, X.; Wang, J.; Shi, Y. Effects of Land Use on Soil Moisture Variations in a Semi-Arid Catchment: Implications for Land and Agricultural Water Management. Land Degrad. Dev. 2014, 25, 163–172. [Google Scholar]
- Cheng, L.; Liu, W.; Li, Z.; Chen, J. Study of soil water movement and groundwater recharge for the loess tableland using environmental tracers. Trans. ASABE 2014, 57, 23–30. [Google Scholar]
- Tan, H.; Liu, Z.; Rao, W.; Jin, B.; Zhang, Y. Understanding recharge in soil-groundwater systems in high loess hills on the Loess Plateau using isotopic data. Catena 2017, 156, 18–29. [Google Scholar] [CrossRef]
- Koestel, J.K.; Moeys, J.; Jarvis, N.J. Meta-analysis of the effects of soil properties, site factors and experimental conditions on solute transport. Hydrol. Earth Syst. Sci. 2012, 16, 1647–1665. [Google Scholar] [CrossRef] [Green Version]
- Rempe, D.M.; Dietrich, W.E. Direct observations of rock moisture, a hidden component of the hydrologic cycle. Proc. Natl. Acad. Sci. USA 2018, 115, 2664–2669. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Miguezmacho, G.; Jobbágy, E.G.; Jackson, R.B.; Oterocasal, C. Hydrologic regulation of plant rooting depth. Proc. Natl. Acad. Sci. USA 2017, 114, 10572–10577. [Google Scholar] [CrossRef] [Green Version]
- Li, H.J.; Si, B.C.; Wu, P.T.; McDonnell, J.J. Water mining from the deep critical zone by apple trees growing on loess. Hydrol. Process. 2019, 33, 320–327. [Google Scholar] [CrossRef]
- Grant, G.E.; Dietrich, W.E. The frontier beneath our feet. Water Resour. Res. 2017, 53, 2605–2609. [Google Scholar] [CrossRef]
- Jackson, R.B.; Jobbágy, E.G.; Avissar, R.; Roy, S.B.; Barrett, D.J.; Cook, C.W.; Farley, K.A.; Le Maitre, D.C.; McCarl, B.A.; Murray, B.C. Trading water for carbon with biological carbon sequestration. Science 2005, 310, 1944–1947. [Google Scholar] [CrossRef]
- Li, H.; Si, B.; Ma, X.; Wu, P. Deep soil water extraction by apple sequesters organic carbon via root biomass rather than altering soil organic carbon content. Sci. Total Environ. 2019, 670, 662–671. [Google Scholar] [CrossRef]
- Gao, X.; Li, H.; Zhao, X.; Ma, W.; Wu, P. Identifying a suitable revegetation technique for soil restoration on water-limited and degraded land: Considering both deep soil moisture deficit and soil organic carbon sequestration. Geoderma 2018, 319, 61–69. [Google Scholar] [CrossRef]
- Buytaert, W.; Iniguez, V.; De Bievre, B. The effects of afforestation and cultivation on water yield in the Andean páramo. Ecol. Manag. 2007, 251, 22–30. [Google Scholar] [CrossRef]
- Robinson, N.; Harper, R.; Smettem, K.R.J. Soil water depletion by Eucalyptus spp. integrated into dryland agricultural systems. Plant Soil 2006, 286, 141–151. [Google Scholar] [CrossRef]
- Nosetto, M.D.; Jobbágy, E.G.; Paruelo, J.M. Land-use change and water losses: The case of grassland afforestation across a soil textural gradient in central Argentina. Glob. Chang. Biol. 2005, 11, 1101–1117. [Google Scholar] [CrossRef]
- Jipp, P.H.; Nepstad, D.C.; Cassel, D.; De Carvalho, C.R. Deep soil moisture storage and transpiration in forests and pastures of seasonally-dry Amazonia. In Potential Impacts of Climate Change on Tropical Forest Ecosystems; Springer: Dordrecht, The Netherlands, 1998; pp. 255–272. [Google Scholar]
- Scott, D.F.; Lesch, W.; Lesch, W. Streamflow responses to afforestation with Eucalyptus grandis and Pinus patula and to felling in the Mokobulaan experimental catchments, South Africa. J. Hydrol. 1997, 199, 360–377. [Google Scholar] [CrossRef]
- Fahey, B.; Jackson, R. Hydrological impacts of converting native forests and grasslands to pine plantations, South Island, New Zealand. Agric. Meteorol. 1997, 84, 69–82. [Google Scholar] [CrossRef]
- Zhang, L.; Dawes, W.; Walker, G. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Gordon, L.J.; Steffen, W.; Jönsson, B.F.; Folke, C.; Falkenmark, M.; Johannessen, Å. Human modification of global water vapor flows from the land surface. Proc. Natl. Acad. Sci. USA 2005, 102, 7612–7617. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zheng, F.-L.; Liu, W.-Z. Spatiotemporal characteristics of reference evapotranspiration during 1961–2009 and its projected changes during 2011–2099 on the Loess Plateau of China. Agric. Meteorol. 2012, 154, 147–155. [Google Scholar] [CrossRef]
- Cao, S. Why large-scale afforestation efforts in China have failed to solve the desertification problem. Environ. Sci. Technol. 2008, 42, 1826–1831. [Google Scholar] [CrossRef]
- Šimůnek, J.; van Genuchten, M.T. Modeling nonequilibrium flow and transport processes using HYDRUS. Vadose Zone J. 2008, 7, 782. [Google Scholar] [CrossRef]
- Shao, J.; Si, B.; Jin, J. Rooting depth and extreme precipitation regulate groundwater recharge in the thick unsaturated zone: A case study. Water 2019, 11, 1232. [Google Scholar] [CrossRef]
- Yunqiang, W.; Mingan, S.; Zhipeng, L.; Zhang, C. Characteristics of dried soil layers under apple orchards of different ages and their applications in soil water managements on the Loess Plateau of China. Pedosphere 2015, 25, 546–554. [Google Scholar]
- Huang, M.; Gallichand, J. Use of the SHAW model to assess soil water recovery after apple trees in the gully region of the Loess Plateau, China. Agric. Water Manag. 2006, 85, 67–76. [Google Scholar] [CrossRef]
- Pickett, S.T.A. Space-for-time substitution as an alternative to long-term studies. In Long-Term Studies in Ecology; Springer: New York, NY, USA, 1989. [Google Scholar]
- Mossadeghi-Björklund, M.; Arvidsson, J.; Keller, T.; Koestel, J.; Lamandé, M.; Larsbo, M.; Jarvis, N. Effects of subsoil compaction on hydraulic properties and preferential flow in a Swedish clay soil. Soil Tillage Res. 2016, 156, 91–98. [Google Scholar] [CrossRef]
- Kumahor, S.K.; de Rooij, G.H.; Schlüter, S.; Vogel, H.J. Water flow and solute transport in unsaturated sand—A comprehensive experimental approach. Vadose Zone J. 2015, 14. [Google Scholar] [CrossRef]
- Yi, J.; Yang, Y.; Liu, M.; Hu, W.; Lou, S.; Zhang, H.; Zhang, D. Characterising macropores and preferential flow of mountainous forest soils with contrasting human disturbances. Soil Res. 2019, 57, 601–614. [Google Scholar] [CrossRef]
- Soares, A.; Moldrup, P.; Vendelboe, A.L.; Katuwal, S.; Norgaard, T.; Delerue-Matos, C.; Tuller, M.; de Jonge, L.W. Effects of soil compaction and organic carbon content on preferential flow in loamy field soils. Soil Sci. 2015, 180, 10–20. [Google Scholar] [CrossRef]
- Ghafoor, A.; Koestel, J.; Larsbo, M.; Moeys, J.; Jarvis, N. Soil properties and susceptibility to preferential solute transport in tilled topsoil at the catchment scale. J. Hydrol. 2013, 492, 190–199. [Google Scholar] [CrossRef]
- Jarvis, N.J. A review of non-equilibrium water flow and solute transport in soil macropores: Principles, controlling factors and consequences for water quality. Eur. J. Soil Sci. 2007, 58, 523–546. [Google Scholar] [CrossRef]
- Novak, V.; Šimåunek, J.; Genuchten, M.T.v. Infiltration of water into soil with cracks. J. Irrig. Drain. Eng. 2000, 126, 41–47. [Google Scholar] [CrossRef]
- DiCarlo, D.A. Can continuum extensions to multiphase flow models describe preferential flow? Vadose Zone J. 2010, 9, 268–277. [Google Scholar] [CrossRef]
- Koestel, J.; Jorda, H. What determines the strength of preferential transport in undisturbed soil under steady-state flow? Geoderma 2014, 217–218, 144–160. [Google Scholar] [CrossRef]
- Wallach, R.; Margolis, M.; Graber, E.R. The role of contact angle on unstable flow formation during infiltration and drainage in wettable porous media. Water Resour. Res. 2013, 49, 6508–6521. [Google Scholar] [CrossRef]
- DiCarlo, D.A. Stability of gravity-driven multiphase flow in porous media: 40 years of advancements. Water Resour. Res. 2013, 49, 4531–4544. [Google Scholar] [CrossRef]
- Renée Brooks, J.; Barnard, H.R.; Coulombe, R.; McDonnell, J.J. Ecohydrologic separation of water between trees and streams in a Mediterranean climate. Nat. Geosci. 2009, 3, 100–104. [Google Scholar] [CrossRef]
- Li, Z.; Chen, X.; Liu, W.; Si, B. Determination of groundwater recharge mechanism in the deep loessial unsaturated zone by environmental tracers. Sci. Total Environ. 2017, 586, 827–835. [Google Scholar] [CrossRef] [Green Version]
- Lin, R.; Wei, K. Tritium profiles of pore water in the Chinese loess unsaturated zone: Implications for estimation of groundwater recharge. J. Hydrol. 2006, 328, 192–199. [Google Scholar] [CrossRef]
- Huang, T.; Pang, Z. Estimating groundwater recharge following land-use change using chloride mass balance of soil profiles: A case study at Guyuan and Xifeng in the Loess Plateau of China. Hydrogeol. J. 2011, 19, 177–186. [Google Scholar] [CrossRef]
Variable | Recovery Time (year) | |||
---|---|---|---|---|
3 (Site 1) | 4 (Site 2) | 5 (Site 3) | 7–15 (Site 4) | |
MD | 0.7 (3.4 to 4.1 m) | 0.8 (4 to 4.8 m) | 1 (4.6 to 5.6 m) | 0.7 (4 to 4.7 m) |
PF | 109.75 | 123.64 | 154.68 | 164.97 |
APF | 36.58 | 30.91 | 30.94 | 20.62 |
PrF | 107.42 (4.1–7.3 m) | 117.24 (4.8–7.6 m) | 80.73 (5.6–8.4 m) | 307.86 (4.7–10 m) |
(PrF + PF) | 217.17 | 240.88 | 235.41 | 472.83 |
PrF/(PrF + PF) | 49.46 | 48.67 | 34.29 | 65.11 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Si, B.; Li, H.; Li, M. Quantify Piston and Preferential Water Flow in Deep Soil Using Cl− and Soil Water Profiles in Deforested Apple Orchards on the Loess Plateau, China. Water 2019, 11, 2183. https://doi.org/10.3390/w11102183
Zhang Z, Si B, Li H, Li M. Quantify Piston and Preferential Water Flow in Deep Soil Using Cl− and Soil Water Profiles in Deforested Apple Orchards on the Loess Plateau, China. Water. 2019; 11(10):2183. https://doi.org/10.3390/w11102183
Chicago/Turabian StyleZhang, Zhiqiang, Bingcheng Si, Huijie Li, and Min Li. 2019. "Quantify Piston and Preferential Water Flow in Deep Soil Using Cl− and Soil Water Profiles in Deforested Apple Orchards on the Loess Plateau, China" Water 11, no. 10: 2183. https://doi.org/10.3390/w11102183