Designing Aquaponic Production Systems towards Integration into Greenhouse Farming
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Design and Development
2.2. Systems 1, 2 and 3
2.3. System 4
2.4. Productivity and Yield
2.5. Water Quality Management
2.6. Water Sampling and Nutrient Analysis
2.7. Data Analysis
3. Results
3.1. System Design
3.2. Biofilter and Nutrient Water Quality
3.3. FCR and Yield
3.4. Comparison of Plant Species
3.5. Pilot Unit in Greenhouse Farm
4. Discussion
4.1. Mechanical Filtration
4.2. Biofiltration
4.3. Vermiculture and Crayfish Production
4.4. Farming Efficiency
4.5. Nutrition and Physiology
4.6. Flow Rate Through Growbeds
4.7. Decoupled Aquaponics
4.8. Public Perception
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Love, D.C.; Fry, J.P.; Genello, L.; Hill, E.S.; Frederick, J.A.; Li, X.; Semmens, K. An international survey of aquaponics practitioners. PLoS ONE 2014, 9, e102662. [Google Scholar] [CrossRef] [PubMed]
- Rakocy, J.E. Hydroponic lettuce production in a recirculating fish culture system. Isl. Perspect. 1988, 3, 4–10. [Google Scholar]
- Rakocy, J. The status of Aquaponics, Part 1. Aquac. Mag. 1999, 4, 83–88. [Google Scholar]
- Lekang, O.-I. Aquaculture Engineering; John Wiley & Sons Ltd.: Oxford, UK, 2013. [Google Scholar]
- Rakocy, J.E. Ten Guidelines for Aquaponic Systems. Aquaponics J. 2007, 46, 14–17. [Google Scholar]
- Graber, A.; Junge, R. Aquaponic Systems: Nutrient recycling from fish wastewater by vegetable production. Desalination 2009, 246, 147–156. [Google Scholar] [CrossRef]
- Thorarinsdottir, R.; Kledal, P.R.; Skar, S.L.G.; Sustaeta, F.; Ragnarsdottir, K.V.; Mankasingh, U.; Pantanella, E.; van de Ven, R.; Shultz, C. Aquaponics Guidelines; University of Iceland: Reykjavik, Iceland, 2015. [Google Scholar]
- Randall, D.J.; Tsui, T.K.N. Ammonia toxicity in fish. Mar. Pollut. Bull. 2002, 45, 17–23. [Google Scholar] [CrossRef]
- Jensen, F.B. Nitrite disrupts multiple physiological functions in aquatic animals. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2003, 135, 9–24. [Google Scholar] [CrossRef]
- Deane, E.E.; Woo, N.Y.S. Impact of nitrite exposure on endocrine, osmoregulatory and cytoprotective functions in the marine teleost Sparus sarba. Aquat. Toxicol. 2007, 82, 85–93. [Google Scholar] [CrossRef]
- Doblander, C.; Lackner, R. Metabolism and detoxification of nitrite by trout hepatocytes. Biochim. Biophys. Acta Gen. Subj. 1996, 1289, 270–274. [Google Scholar] [CrossRef]
- Goddek, S.; Delaide, B.; Mankasingh, U.; Ragnarsdottir, K.V.; Jijakli, H.; Thorarinsdottir, R. Challenges of sustainable and commercial aquaponics. Sustainability 2015, 7, 4199–4224. [Google Scholar] [CrossRef]
- Baroiller, J.F.; D’Cotta, H.; Bezault, E.; Wessels, S.; Hoerstgen-Schwark, G. Tilapia sex determination: Where temperature and genetics meet. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2009, 153, 30–38. [Google Scholar] [CrossRef]
- FAO. Livestock’s Long Shadow-Environmental Issues and Options; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006; Volume 3, pp. 1–377. [Google Scholar]
- Wilkinson, J.M. Re-defining efficiency of feed use by livestock. Animal 2011, 5, 1014–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakocy, J.; Shultz, R.C.; Bailey, D.S.; Thoman, E.S. Aquaponic production of tilapia and basil: Comparing a batch and staggered cropping system. South Pacific Soil. Cult. Conf. 2003, 648, 63–69. [Google Scholar] [CrossRef]
- Savidov, N.; Hutchings, E.; Rakocy, J.E. Fish and plant production in a recirculating aquaponic system: A new approach to sustainable agriculture in Canada. Acta Hortic. 2007, 742, 209–222. [Google Scholar] [CrossRef]
- Trang, N.; Schierup, H.-H.; Brix, H. Leaf vegetables for use in integrated hydroponics and aquaculture systems: Effects of root flooding on growth, mineral composition and nutrient uptake. African J. Biotechnol. 2010, 9, 4186–4196. [Google Scholar]
- Rakocy, J.E.; Bailey, D.S.; Shultz, R.C.; Thoman, E.S. Update on tilapia and vegetable production in the UVI aquaponic system. New dimensions on farmed Tilapia. In Proceedings of the Sixth International Symposium on Tilapia in Aquaculture, Manila, Philippines, 12–16 September 2004; pp. 676–690. [Google Scholar]
- Love, D.C.; Fry, J.P.; Li, X.; Hill, E.S.; Genello, L.; Semmens, K.; Thompson, R.E. Commercial aquaponics production and profitability: Findings from an international survey. Aquaculture 2015, 435, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Medina, M.; Jayachandran, K.; Bhat, M.G.; Deoraj, A. Assessing plant growth, water quality and economic effects from application of a plant-based aquafeed in a recirculating aquaponic system. Aquac. Int. 2016, 24, 415–427. [Google Scholar] [CrossRef]
- Hu, Z.; Lee, J.W.; Chandran, K.; Kim, S.; Brotto, A.C.; Khanal, S.K. Effect of plant species on nitrogen recovery in aquaponics. Bioresour. Technol. 2015, 188, 92–98. [Google Scholar] [CrossRef]
- Zou, Y.; Hu, Z.; Zhang, J.; Xie, H.; Guimbaud, C.; Fang, Y. Effects of pH on nitrogen transformations in media-based aquaponics. Bioresour. Technol. 2016, 210, 81–87. [Google Scholar] [CrossRef]
- Tyson, R.V.; Simonne, E.H.; Treadwell, D.D.; White, J.M.; Simonne, A. Reconciling pH for ammonia biofiltration and cucumber yield in a recirculating aquaponic system with perlite biofilters. HortScience 2008, 43, 719–724. [Google Scholar] [CrossRef]
- Liang, J.-Y.; Chien, Y.-H. Effects of feeding frequency and photoperiod on water quality and crop production in a tilapia–water spinach raft aquaponics system. Int. Biodeterior. Biodegrad. 2013, 85, 693–700. [Google Scholar] [CrossRef]
- Lam, S.S.; Ma, N.L.; Jusoh, A.; Ambak, M.A. Biological nutrient removal by recirculating aquaponic system: Optimization of the dimension ratio between the hydroponic & rearing tank components. Int. Biodeterior. Biodegrad. 2015, 102, 107–115. [Google Scholar]
- Castillo-Castellanos, D.; Zavala-Leal, I.; Ruiz-Velazco, J.M.J.; Radilla-García, A.; Nieto-Navarro, J.T.; Romero-Bañuelos, C.A.; González-Hernández, J. Implementation of an experimental nutrient film technique-type aquaponic system. Aquac. Int. 2016, 24, 637–646. [Google Scholar] [CrossRef]
- Sage, R.F.; Coleman, J.F. Effects of low atmospheric CO2 on plants: More than a thing of the past. Trends Plant Sci. 2001, 6, 18–24. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Y.; Pan, K.; Zhu, T.; Li, W.; Zhang, L. Carbon and nitrogen metabolism in leaves and roots of dward bambbo (Fargesia denudata Yi) subjected to drought fro two consectutive years during sprouting period. J. Plant Growth Regul. 2014, 33, 243–255. [Google Scholar] [CrossRef]
- APHA/AWWA. Standard Methods for the Examination of Water and Wastewater, 18th ed.; American Public Health Association; American Water Works Association; Water Environment Federation: Washington, DC, USA, 1992. [Google Scholar]
- Shand, C.A.; Williams, B.L.; Coutts, G. Determination of N-species in soil extracts using microplate techniques. Talanta 2008, 74, 648–654. [Google Scholar] [CrossRef] [PubMed]
- Koroleff, F. Determination of ammonia. In Methods of Seawater Analysis; Grasshoff, K., Ed.; Verlag Chemie: Weinheim, Germany, 1976; pp. 126–133. [Google Scholar]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Bradley, L.; Hosier, S. Guide to Symptoms of Plant Nutrient Deficiencies; AZ1106; University of Arizona Cooperative Extension: Phoenix, AZ, USA, 1999; pp. 1–3. [Google Scholar]
- Taiz, L.; Zeiger, E. Plant Physiology, 5th ed.; Sinauer Associates, Inc.: Sunderland, MA, USA, 2010; ISBN 978-0-87893-866-7. [Google Scholar]
- Goddek, S.; Espinal, C.A.; Delaide, B.; Jijakli, M.H.; Schmautz, Z.; Wuertz, S.; Keesman, K. Navigating towards decoupled aquaponics systems: A system dynamics design approach. Water 2016, 8, 303. [Google Scholar] [CrossRef]
- Mukherje, S.; Golder, D.; Rana, S.; Jana, B.B. Responses of succinate dehydrogenase and non-specific alkaline phosphatases and mortality of tilapia to ambient pH stress in a sewage-fed aquaculture pond. IJEB 2007, 45, 630–637. [Google Scholar]
- Han, D.-Y.; Zheng, Q.-M.; Sun, Z.-T. Gene expression and activities of antioxidant enzymes in liver of hybrid tilapia, Oreochromis niloticus x orechromis aureus, under acute pH stress. JWAS 2016, 47, 260–267. [Google Scholar]
- Ebeling, J.M.; Timmons, M.B. Recirculating Aquaculture, 2nd ed.; Cayuga Aqua Ventures: Ithaca, NY, USA, 2010. [Google Scholar]
- Tarre, S.; Green, M. High-rate nitrification at low pH in suspended- and attached-biomass reactors. Appl. Environ. Microbiol. 2004, 70, 6481–6487. [Google Scholar] [CrossRef] [PubMed]
- Suhr, K.I.; Pedersen, P.B. Nitrification in moving bed and fixed bed biofilters treating effluent water from a large commercial outdoor rainbow trout RAS. Aquac. Eng. 2010, 42, 31–37. [Google Scholar] [CrossRef]
- Rakocy, J.E.; Bailey, D.S.; Shultz, K.A.; Cole, W.M. Evaluation of a Commercial-Scale Aquaponic Unit for the Production of Tilapia and Lettuce. Fourth Int. Symp. Tilapia Aquac. 1997, 1, 357–372. [Google Scholar]
- Seawright, D.E.; Stickney, R.R.; Walker, R.B. Nutrient dynamics in integrated aquaculture-hydroponics systems. Aquaculture 1998, 160, 215–237. [Google Scholar] [CrossRef]
- Gangenes Skar, S.L.; (Nibio, Grimstad, Norway). Personal Communication, 2016.
- Endut, A.; Jusoh, A.; Ali, N.; Wan Nik, W.B.; Hassan, A. A study on the optimal hydraulic loading rate and plant rations in recirculation aquaponics system. Bioresour. Technol. 2010, 101, 1511–1517. [Google Scholar] [CrossRef] [PubMed]
- Graber, A.; (Urban Farming, The Hague, The Netherlands). Personal Communication, 2016.
- He, A.; Ning, L.; Chen, L.; Chen, Y.; Xing, Q.; Li, J.; Qiao, F.; Li, D.; Zhang, M.; Du, Z. Systemic adaptation of lipid metabolism in response to low- and high-fat diet in Nile tilapia (Oreochromis niloticus). Physiol. Rep. 2015, 3, e12485. [Google Scholar] [CrossRef] [PubMed]
- Brownell, P.F.; Bielig, L.M. The role of sodium in the conversion of pyruvate to phosphoenolpyruvate in mesophyll chloroplasts of C4 plants. Aust. J. Plant Physiol. 1996, 23, 171–177. [Google Scholar]
- Jensen, F.B. Uptake, elimination and effects of nitrite and nitrate in freshwater crayfish (Astacus astacus). Aquat. Toxicol. 1996, 34, 95–104. [Google Scholar] [CrossRef]
- Stiller, K.T.; Vanselow, K.H.; Moran, D.; Bojens, G.; Voigt, W.; Meyer, S.; Schulz, C. The effect of carbon dioxide on growth and metabolism in juvenile turbot Scophthalmus maximus L. Aquaculture 2015, 444, 143–150. [Google Scholar] [CrossRef]
- Slosar, M.; Uher, A.; Andrejiova, A.; Jurikova, T. Selected yield and qualitative parameters of broccoli in dependence on nitrogen, sulfur, and zinc fertilization. Turk. J. Agric. For. 2016, 40, 465–473. [Google Scholar]
- Sorin, E.; Etienne, P.; Maillard, A.; Zamarreno, A.-M.; Garcia-Mina, J.-M.; Arkoun, M.; Jamois, F.; Cruz, F.; Yvin, J.-C.; Ourry, A. Effect of sulphur deprivation on osmotic potential components and nitrogen metabolism in oilseed rape leaves: Identification of a new early indicator. J. Exp. Bot. 2015, 66, 6175–6189. [Google Scholar] [CrossRef] [PubMed]
- Kloas, W.; Groß, R.; Baganz, D.; Graupner, J.; Monsees, H.; Schmidt, U.; Staaks, G.; Suhl, J.; Tschirner, M.; Wittstock, B.; et al. A new concept for aquaponic systems to improve sustainability, increase productivity, and reduce environmental impacts. Aquac. Environ. Interact. 2015, 7, 179–192. [Google Scholar] [CrossRef]
- Atlason, R.; Danner, R.I.; Unnthorsson, R.; Oddsson, G.V.; Sustaeta, F.; Thorarinsdottir, R.I. Energy return on investment for aquaponics: Case studies from Iceland and Spain. In BioPhysical Economics and Resource Quality; Springer: Basel, Switzerland, 2017; Volume 2, pp. 1–12. [Google Scholar] [CrossRef]
Scientific Name | Plant Name | Reference | Crop |
---|---|---|---|
Abelmoschus esculentus | Okra | [19] | Fruit vegetable |
Allium schoenoprasum | Chives | [17,20] | Herb |
Amaranthus tricolor | Red amaranth | [21] | Leaf vegetable |
Brassica rapa var. chinensis | Pak-choi | [18,22,23] | Leaf vegetable |
Brassica rapa var. parachinensis | Choy sum | [18] | Leaf vegetable |
Capsicum annuum | Sweet pepper | [20] | Fruit vegetable |
Cucumis sativus | Cucumber | [6,17,24] | Fruit vegetable |
Ipomoea aquatica | Water spinach | [17,25,26] | Leaf vegetable |
Lactuca sativa | Lettuce | [17,18,27] | Leaf vegetable |
Nasturtium officinale | Watercress | [17] | Leaf vegetable |
Ocimum basilicum | Basil | [16,17,20] | Herb |
Petroselinum crispum | Parsley | [17] | Herb |
Solanum lycopersicum | Tomato | [6] | Fruit vegetable |
Solanum melongena | Eggplant | [6,17] | Fruit vegetable |
Spinacia oleracea | Spinach | [17] | Leaf vegetable |
System | Phase | Period | System Type | System Volume (m3) | Area of Hydroponic Beds (m2) | Housing | Artificial Lighting | Sunlight/Ambient Light | Crops | Initial Fish Weight | Feed Added, in % of Fish Weight |
---|---|---|---|---|---|---|---|---|---|---|---|
System 1 | Year-round | F&D | 1.2 | 1.2 | Office Building | 12 h | 4–22 h | Basil, watercress, pak-choi, komatsuna (Brassica rapa var. perviridis), okra, tomato, pepper | 3 g | 1% daily | |
System 2 | Summer | DWC | 1.4 | 2.4 | Greenhouse | No | 18–22 h | Basil, coriander (Coriandrum sativum), mint (Mentha sp.), rucola (Eruca sativa) | 25–100 g/2.4 kg * | 1% daily | |
System 3 | Summer | DWC | 4.9 | 6 | Greenhouse | No | 18–22 h | Basil, coriander, mint, rucola | 25–100 g/7 kg * | 1% daily | |
System 4 | Test | Winter | DWC | 4.5 | 7.2 | Industrial building | 12 h | 8–12 h | Pak-choi | 200–400 g/15 kg * | 1% daily |
System 4 | Trial 1 | Summer | DWC | 4.5 | 7.2 | Industrial building | 12 h | 18–22 h | Pak-choi | 300–560 g/15 kg * | 1% daily |
System 4 | Trial 2 | Winter | DWC | 4.5 | 7.2 | Industrial building | 12 h | 4–6 h | Pak-choi | 350–600 g/15 kg * | 1% daily |
System 4, Trial 1 | System 4, Trial 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Df | F | Pr(>F) | Significance | Df | F | Pr(>F) | Significanc 1 | ||
Between | 2 | 4.77 | 0.12 | NS | Between | 2 | 0.066 | 0.94 | NS |
Within | 3 | Within | 3 |
TAN (mg/L) | NO2-N (mg/L) | ||||||
Df | F | Pr (>F) | Significance | F | Pr(>F) | Significance | |
Trial | 1 | 3.73 | 0.63 | NS | 0.14 | 0.71 | NS |
Trial:Week | 1 | 1.45 | 0.24 | NS | 1.33 | 0.26 | NS |
Trial:Week:Flow | 2 | 0.09 | 0.91 | NS | 0.41 | 0.67 | NS |
Residuals | 32 | ||||||
NO3-N (mg/L) | PO4-P (mg/L) | ||||||
Df | F | Pr (>F) | Significance | F | Pr(>F) | Significance | |
Trial | 1 | 2.29 | 0.14 | NS | 1.94 | 0.174 | NS |
Trial:Week | 1 | 0.16 | 0.69 | NS | 2.672 | 0.112 | NS |
Trial:Week:Flow | 2 | 0.01 | 0.99 | NS | 1.172 | 0.323 | NS |
Residuals | 32 |
Week | Sampling Point | P | K | Ca | Mg | Na | Fe | Si | Mo | B |
---|---|---|---|---|---|---|---|---|---|---|
1 | Fish Tank | 9.64 | 4.71 | 22.80 | 5.27 | 36.08 | 0.049 | 0.297 | <0.002 | 0.041 |
1 | Bio 1 | 9.58 | 4.63 | 22.96 | 5.18 | 36.29 | 0.051 | 0.348 | <0.002 | 0.029 |
1 | Sump | 9.39 | 4.55 | 22.34 | 5.11 | 34.90 | 0.047 | 0.291 | <0.002 | 0.028 |
2 | Fish Tank | 10.99 | 5.85 | 23.73 | 5.50 | 36.86 | 0.047 | 0.304 | <0.002 | 0.028 |
2 | Bio 1 | 11.17 | 5.99 | 24.18 | 5.65 | 37.88 | 0.046 | 0.338 | <0.002 | 0.029 |
2 | Sump | 10.97 | 5.80 | 23.86 | 5.51 | 36.97 | 0.051 | 0.326 | <0.002 | 0.041 |
3 | Fish Tank | 9.69 | 5.20 | 21.19 | 4.64 | 29.08 | 0.039 | 0.355 | <0.002 | 0.024 |
3 | Bio 1 | 12.24 | 6.83 | 24.25 | 5.75 | 37.44 | 0.046 | 0.371 | <0.002 | 0.029 |
3 | Sump | 12.49 | 6.99 | 24.41 | 5.86 | 38.38 | 0.047 | 0.345 | <0.002 | 0.029 |
6 | Fish Tank | 10.81 | 5.34 | 21.26 | 4.59 | 28.37 | 0.339 | 0.291 | <0.002 | 0.021 |
6 | Bio 1 | 12.15 | 6.25 | 22.74 | 5.24 | 33.25 | 0.373 | 0.343 | <0.002 | 0.036 |
6 | Sump | 9.09 | 4.41 | 19.23 | 3.87 | 24.05 | 0.283 | 0.356 | <0.002 | 0.018 |
System/Phase | Feed (kg) | Fish Biomass Increase (kg) | Feed Conversion Ratio | Plant Yield (kg) | Plant to Feed Conversion Ratio | Plant to Fish Ratio |
---|---|---|---|---|---|---|
System 2 | 2.9 | 3.2 | 0.9 | 3.8 | 1.3 | 1.2 |
System 3 | 4.0 | 3.8 | 1.1 | 3.6 | 0.8 | 1.0 |
System 4/Test | 10.6 | 9.2 | 1.2 | 4.8 | 0.5 | 0.5 |
System 4/Trial 1 | 6.0 | 4.4 | 1.4 | 17.7 | 3.0 | 4.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danner, R.I.; Mankasingh, U.; Anamthawat-Jonsson, K.; Thorarinsdottir, R.I. Designing Aquaponic Production Systems towards Integration into Greenhouse Farming. Water 2019, 11, 2123. https://doi.org/10.3390/w11102123
Danner RI, Mankasingh U, Anamthawat-Jonsson K, Thorarinsdottir RI. Designing Aquaponic Production Systems towards Integration into Greenhouse Farming. Water. 2019; 11(10):2123. https://doi.org/10.3390/w11102123
Chicago/Turabian StyleDanner, Ragnar Ingi, Utra Mankasingh, Kesara Anamthawat-Jonsson, and Ragnheidur Inga Thorarinsdottir. 2019. "Designing Aquaponic Production Systems towards Integration into Greenhouse Farming" Water 11, no. 10: 2123. https://doi.org/10.3390/w11102123
APA StyleDanner, R. I., Mankasingh, U., Anamthawat-Jonsson, K., & Thorarinsdottir, R. I. (2019). Designing Aquaponic Production Systems towards Integration into Greenhouse Farming. Water, 11(10), 2123. https://doi.org/10.3390/w11102123