# Multi-Objective Operation of Cascade Hydropower Reservoirs Using TOPSIS and Gravitational Search Algorithm with Opposition Learning and Mutation

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Enhanced Gravitational Search Algorithm (EGSA)

#### 2.1. Gravitational Search Algorithm (GSA)

_{j}is the random number uniformly distributed in the range of [0,1]. $Kbest$ is the number of agents with better fitness values.

_{i}is the random number uniformly distributed in the range of [0,1].

#### 2.2. Opposition Learning Strategy to Improve the Convergence Speed of the Swarm

^{1}for short) of x could be easily obtained by ${x}^{1}=a+b-x$. Based on previous references, when the optimal objective function value was unknown, the opposite directions of the current solution could increase the probability of finding better solutions [56,57,58]. The opposition learning strategy could enlarge the search region in the three-dimensional space. Thus, the modified opposition learning strategy based on the social learning mechanism in PSO is proposed to improve the convergence speed of the swarm, which could be expressed as below:

#### 2.3. Partial Mutation Strategy to Enhance the Individual Diversity

_{1}is the random number uniformly distributed in the range of [−0.5, 0.5].

#### 2.4. Elastic-Ball Modification Strategy to Promote Solution Feasibility

#### 2.5. Execution Procedure of the Proposed EGSA Method

- Step 1: Set the values of the computational parameters and then randomly generate the initial swarm in the problem space.
- Step 2: Calculate the fitness values of all the agents in the current population, and then update the personal best-known of each agent and the global best-known agent of the swarm.
- Step 3: Calculate the correlated variables (like the gravitational coefficient, mass, and acceleration) to update the velocity and position values of all the agents.
- Step 4: Execute the opposition learning strategy to increase the convergence speed of the swarm.
- Step 5: Execute the partial mutation search strategy to enhance the individual diversity.
- Step 6: Execute the elastic-ball modification strategy to promote the solution feasibility.
- Step 7: Repeat Step 2–6 until the stopping criterion is met, and then the global optimal position is regarded as the final solution of the optimization problem.

## 3. Numerical Experiments to Verify the Performance of the EGSA Method

#### 3.1. Benchmark Functions

_{min}is the optimal objective value in theory. For all test functions, the optimal value of F

_{8,}−418.9 × D, varies with the dimension; while the optimal values for other functions are 0. Meanwhile, the benchmark functions are divided into two categories—unimodal functions (F

_{1}–F

_{8}) with one global optimum, and multimodal functions (F

_{9}–F

_{12}) with multiple local optimums. The unimodal functions are used to test the convergence speed of the algorithm, while the multimodal function can test the ability of jumping out of the local optimum, which can fully verify the performance of the evolutionary methods.

#### 3.2. Parameters Settings

_{1}and c

_{2}) were set as 2.0, respectively.

#### 3.3. Comparison with Other Evolutionary Algorithms in Small-Scale Problems

#### 3.3.1. Result Comparison in Multiple Runs

_{5}, the WOA performance was tied with EGSA in F

_{9}and defeated by EGSA in the other functions. To sum up, the proposed method could obtain better results than the other evolutionary algorithms in the 12 test functions.

#### 3.3.2. Box and Whisker Test

_{4}–F

_{5}, which indicated that this method easily fell into the state of premature convergence in the search process; the SCA algorithm exhibited outliers in most functions but had a distribution of relatively discrete solutions in F

_{3}, which indicated that SCA was not ideal in terms of robustness. Additionally, the EGSA method had a more concentrated solution distribution and fewer outliers in all functions, demonstrating its satisfying robustness and search ability. Thus, the performances of the EGSA method were superior to the comparative methods in the 12 functions.

#### 3.3.3. Wilcoxon Nonparametric Test

^{+}than R

^{–}in all comparisons, while all values of p were smaller than 0.05. This case proved that the EGSA method outperformed the other methods in a statistical manner.

#### 3.3.4. Convergence Analysis

_{1}–F

_{4}as examples, three methods (GSA, PSO, and DE) quickly fail into local optima because their best-so-far solutions change slightly in the evolutionary process; both EGSA and SCA converge to a smaller objective at the initial stage, but EGSA can quickly find better solutions at iteration 800, while SCA fails to make it. Additionally, for multimodal functions, EGSAs achieve the global optimal solution in both F

_{9}and F

_{11}, and better results than other methods in F

_{8}, F

_{10}, and F

_{12}. Thus, the above analysis fully proves that the presented method has a superior convergence speed and global search ability.

## 4. EGSA for the Multi-Objective Operation of Cascade Hydropower Reservoirs

#### 4.1. Mathematical Model

#### 4.1.1. Objective Functions

#### 4.1.2. Physical Constraints

#### 4.2. Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS)

#### 4.3. Details of EGSA for Multi-Objective Operation of Cascade Hydropower Reservoirs

#### 4.3.1. Individual Structure and Swarm Initialization

#### 4.3.2. Heuristic Constraint Handling Method

#### 4.3.3. Calculation of the Modified Objective Values

^{’}and F

^{’}).

_{1}th inequality constraint; ${e}_{{l}_{2}}(\xb7)\le 0$ is the l

_{2}th equality constraint; ${c}_{{l}_{1}}$ and ${c}_{{l}_{2}}$ are the penalty coefficients for the relevant inequality or equality constraint. ${L}_{g}$ and ${L}_{e}$ denote the number of inequality and equality constraints, respectively.

#### 4.3.4. Execution Procedures of the EGSA Method for the Target Problem

## 5. Case Studies

#### 5.1. Engineering Background

#### 5.2. Case Study 1: Power Generation of Cascade Hydropower Reservoirs

#### 5.2.1. Robustness Testing of Different Evolutionary Algorithms

#### 5.2.2. Comparison of the Optimal Results Obtained by Different Evolutionary Algorithms

^{4}kW·h, 3.2 × 10

^{4}kW·h, 8.61 × 10

^{4}kW·h, and 8.5 × 10

^{4}kW·h improvements in power generation in Case 1, respectively. Additionally, among all hydroplants, the GPT hydroplant with a huge installed capacity produced the largest proportion of power generation in all solutions, which was in line with the actual operation situation of the hydropower system [80,81,82,83]. Thus, the above analysis demonstrated the effectiveness and rationality of the scheduling process obtained by the proposed method.

#### 5.2.3. Convergence Analysis of Different Evolutionary Algorithms

#### 5.3. Case Study 2: Peak Operation of Cascade Hydropower Reservoirs

#### 5.3.1. Robustness Testing of Different Evolutionary Algorithms

#### 5.3.2. Comparison of the Optimal Results Obtained by Different Evolutionary Algorithms

#### 5.3.3. Rationality Analysis of the Best Results Obtained by the Different Evolutionary Algorithms

#### 5.4. Case Study 3: Mutli-Objective Operation of Cascade Hydropower Reservoirs

#### 5.4.1. Comparative Analysis of the Optimal Results Obtained by the Different Methods with 100 Weights

_{1}for power generation was increased from 0 to 1.0 at the same interval of 0.01, while the weight w

_{2}for peak operation was set as 1.0 – w

_{1}. From Figure 11, it was observed that the total generation was gradually decreasing with the increasing objective value of peak operation, which implied that there was an obvious conflict between power generation and peak operation. Additionally, the solutions of PSO and GSA were dominated by that of the EGSA method, which meant that the EGSA method had a higher probability to obtain the Pareto optimal solutions than the PSO and GSA method. Thus, the proposed method can generate the near-optimal Pareto solutions to approximate the relationship between power generation and peak shaving in practice.

#### 5.4.2. Rationality Analysis of the Best Results Obtained by the Different Evolutionary Algorithms

## 6. Conclusions

- (1)
- Due to the loss of the population diversity, the conventional GSA method suffered from severe premature convergence shortcomings. The proposed method based on the three modified strategies (opposite learning strategy, partial mutation strategy and elastic-ball modification strategy) could effectively improve the convergence speed, swarm diversity, and solution feasibility of the standard GSA method, respectively.
- (2)
- For the original complex multi-objective optimization problem, balancing power generation and peak operation requirements, the famous TOPSIS method was used to transform it into the relatively simple single-objective problem, which could help make an obvious reduction in the modeling difficulty of the multi-objective decision.
- (3)
- There was a competitive relationship between the generation benefit of the hydropower enterprise and the peak operation of the power system. In other words, an increasing value of one objective would obviously reduce another objective value. Thus, it was necessary for operators to carefully determine the scheduling schemes so as to effectively balance the practical requirements of power generation enterprises and power grid companies.

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Chang, J.; Li, Y.; Yuan, M.; Wang, Y. Efficiency evaluation of hydropower station operation: A case study of Longyangxia station in the Yellow River, China. Energy
**2017**, 135, 23–31. [Google Scholar] [CrossRef] - Feng, M.; Liu, P.; Guo, S.; Gui, Z.; Zhang, X.; Zhang, W.; Xiong, L. Identifying changing patterns of reservoir operating rules under various inflow alteration scenarios. Adv. Water Resour.
**2017**, 104, 23–36. [Google Scholar] [CrossRef] - Liu, P.; Li, L.; Chen, G.; Rheinheimer, D.E. Parameter uncertainty analysis of reservoir operating rules based on implicit stochastic optimization. J. Hydrol.
**2014**, 514, 102–113. [Google Scholar] [CrossRef] - Zhao, T.; Zhao, J.; Yang, D. Improved dynamic programming for hydropower reservoir operation. J. Water Res. Plan. Manag.
**2014**, 140, 365–374. [Google Scholar] [CrossRef] - Liu, S.; Feng, Z.K.; Niu, W.J.; Zhang, H.R.; Song, Z.G. Peak operation problem solving for hydropower reservoirs by elite-guide sine cosine algorithm with Gaussian local search and random mutation. Energies
**2019**, 12, 2189. [Google Scholar] [CrossRef] - Feng, Z.K.; Niu, W.J.; Cheng, C.T. China’s large-scale hydropower system: Operation characteristics, modeling challenge and dimensionality reduction possibilities. Renew. Energy
**2019**, 136, 805–818. [Google Scholar] [CrossRef] - Bai, T.; Wu, L.; Chang, J.X.; Huang, Q. Multi-Objective Optimal Operation Model of Cascade Reservoirs and Its Application on Water and Sediment Regulation. Water Resour. Manag.
**2015**, 29, 2751–2770. [Google Scholar] [CrossRef] - Guo, X.Y.; Ma, C.; Tang, Z.B. Multi-timescale joint optimal dispatch model considering environmental flow requirements for a dewatered river channel: Case study of Jinping cascade hydropower stations. J. Water Res. Plan. Manag.
**2018**, 144, 05018014. [Google Scholar] [CrossRef] - Liu, P.; Nguyen, T.D.; Cai, X.; Jiang, X. Finding multiple optimal solutions to optimal load distribution problem in hydropower plant. Energies
**2012**, 5, 1413–1432. [Google Scholar] [CrossRef] - Chang, J.; Wang, X.; Li, Y.; Wang, Y.; Zhang, H. Hydropower plant operation rules optimization response to climate change. Energy
**2018**, 160, 886–897. [Google Scholar] [CrossRef] - Guo, S.; Chen, J.; Li, Y.; Liu, P.; Li, T. Joint operation of the multi-reservoir system of the Three Gorges and the Qingjiang cascade reservoirs. Energies
**2011**, 4, 1036–1050. [Google Scholar] [CrossRef] - Zhang, Y.; Jiang, Z.; Ji, C.; Sun, P. Contrastive analysis of three parallel modes in multi-dimensional dynamic programming and its application in cascade reservoirs operation. J. Hydrol.
**2015**, 529, 22–34. [Google Scholar] [CrossRef] - Reddy, S.; Abhyankar, A.R.; Bijwe, P.R. Reactive power price clearing using multi-objective optimization. Energy
**2011**, 36, 3579–3589. [Google Scholar] [CrossRef] - Feng, Z.K.; Niu, W.J.; Wang, S.; Cheng, C.T.; Jiang, Z.Q.; Qin, H.; Liu, Y. Developing a successive linear programming model for head-sensitive hydropower system operation considering power shortage aspect. Energy
**2018**, 155, 252–261. [Google Scholar] [CrossRef] - Catalao, J.P.S.; Mariano, S.J.P.S.; Mendes, V.M.F.; Ferreira, L.A.F.M. Scheduling of head-sensitive cascaded hydro systems: A nonlinear approach. IEEE Trans. Power Syst.
**2009**, 24, 337–346. [Google Scholar] [CrossRef] - Jiang, Z.; Wang, C.; Liu, Y.; Feng, Z.; Ji, C.; Zhang, H. Study on the raw water allocation and optimization in shenzhen city, China. Water
**2019**, 11, 1426. [Google Scholar] [CrossRef] - Jiang, Z.; Ji, C.; Qin, H.; Feng, Z. Multi-stage progressive optimality algorithm and its application in energy storage operation chart optimization of cascade reservoirs. Energy
**2018**, 148, 309–323. [Google Scholar] [CrossRef] - Huang, G.H.; He, L.; Zeng, G.M.; Lu, H.W. Identification of optimal urban solid waste flow schemes under impacts of energy prices. Environ. Eng. Sci.
**2008**, 25, 685–695. [Google Scholar] [CrossRef] - Ren, G.; Cao, Y.; Wen, S.; Huang, T.; Zeng, Z. A modified Elman neural network with a new learning rate scheme. Neurocomputing
**2018**, 286, 11–18. [Google Scholar] [CrossRef] - Xie, X.; Wen, S.; Zeng, Z.; Huang, T. Memristor-based circuit implementation of pulse-coupled neural network with dynamical threshold generators. Neurocomputing
**2018**, 284, 10–16. [Google Scholar] [CrossRef] - Wen, S.; Xie, X.; Yan, Z.; Huang, T.; Zeng, Z. General memristor with applications in multilayer neural networks. Neural Netw.
**2018**, 103, 142–149. [Google Scholar] [CrossRef] [PubMed] - Yang, T.; Gao, X.; Sellars, S.L.; Sorooshian, S. Improving the multi-objective evolutionary optimization algorithm for hydropower reservoir operations in the California Oroville-Thermalito complex. Environ. Model. Softw.
**2015**, 69, 262–279. [Google Scholar] [CrossRef] - Xu, B.; Zhong, P.A.; Du, B.; Chen, J.; Liu, W.; Li, J.; Guo, L.; Zhao, Y. Analysis of a stochastic programming model for optimal hydropower system operation under a deregulated electricity market by considering forecasting uncertainty. Water
**2018**, 10, 885. [Google Scholar] [CrossRef] - Zhao, T.; Zhao, J. Improved multiple-objective dynamic programming model for reservoir operation optimization. J. Hydroinform.
**2014**, 16, 1142–1157. [Google Scholar] [CrossRef] - Feng, Z.K.; Niu, W.J.; Cheng, C.T. Optimizing electrical power production of hydropower system by uniform progressive optimality algorithm based on two-stage search mechanism and uniform design. J. Clean. Prod.
**2018**, 190, 432–442. [Google Scholar] [CrossRef] - Catalão, J.P.S.; Mariano, S.J.P.S.; Mendes, V.M.F.; Ferreira, L.A.F.M. Nonlinear optimization method for short-term hydro scheduling considering head-dependency. Eur. Trans. Electr. Power
**2010**, 20, 172–183. [Google Scholar] [CrossRef] - Jia, B.; Zhong, P.; Wan, X.; Xu, B.; Chen, J. Decomposition-coordination model of reservoir group and flood storage basin for real-time flood control operation. Hydrol. Res.
**2015**, 46, 11–25. [Google Scholar] [CrossRef] - Dong, M.; Wen, S.; Zeng, Z.; Yan, Z.; Huang, T. Sparse fully convolutional network for face labeling. Neurocomputing
**2019**, 331, 465–472. [Google Scholar] [CrossRef] - Li, Z.; Dong, M.; Wen, S.; Hu, X.; Zhou, P.; Zeng, Z. CLU-CNNs: Object detection for medical images. Neurocomputing
**2019**, 350, 53–59. [Google Scholar] [CrossRef] - Cao, Y.; Wang, S.; Guo, Z.; Huang, T.; Wen, S. Synchronization of memristive neural networks with leakage delay and parameters mismatch via event-triggered control. Neural Netw.
**2019**, 119, 178–189. [Google Scholar] [CrossRef] - Zheng, F. Comparing the real-time searching behavior of four differential-evolution variants applied to water-distribution-network design optimization. J. Water Res. Plan. Manag.
**2015**, 141, 04015016. [Google Scholar] [CrossRef] - Yang, T.; Asanjan, A.A.; Faridzad, M.; Hayatbini, N.; Gao, X.; Sorooshian, S. An enhanced artificial neural network with a shuffled complex evolutionary global optimization with principal component analysis. Inf. Sci.
**2017**, 418–419, 302–316. [Google Scholar] [CrossRef] - Wan, W.; Guo, X.; Lei, X.; Jiang, Y.; Wang, H. A Novel Optimization Method for Multi-Reservoir Operation Policy Derivation in Complex Inter-Basin Water Transfer System. Water Resour. Manag.
**2018**, 32, 31–51. [Google Scholar] [CrossRef] - Feng, Z.K.; Niu, W.J.; Cheng, C.T. Optimization of hydropower reservoirs operation balancing generation benefit and ecological requirement with parallel multi-objective genetic algorithm. Energy
**2018**, 153, 706–718. [Google Scholar] [CrossRef] - Zheng, F.; Zecchin, A.C.; Maier, H.R.; Simpson, A.R. Comparison of the searching behavior of NSGA-II, SAMODE, and borg MOEAs applied to water distribution system design problems. J. Water Res. Plan. Manag.
**2016**, 142, 04016017. [Google Scholar] [CrossRef] - Salkuti, S.R. Short-term electrical load forecasting using hybrid ANN–DE and wavelet transforms approach. Electr. Eng.
**2018**, 100, 2755–2763. [Google Scholar] [CrossRef] - Chang, J.X.; Bai, T.; Huang, Q.; Yang, D.W. Optimization of Water Resources Utilization by PSO-GA. Water Resour. Manag.
**2013**, 27, 3525–3540. [Google Scholar] [CrossRef] - Ji, Y.; Lei, X.; Cai, S.; Wang, X. Hedging rules for water supply reservoir based on the model of simulation and optimization. Water
**2016**, 8, 249. [Google Scholar] [CrossRef] - Zhang, J.; Li, Z.; Wang, X.; Lei, X.; Liu, P.; Feng, M.; Khu, S.T.; Wang, H. A novel method for deriving reservoir operating rules based on flood classification-aggregation-decomposition. J. Hydrol.
**2019**, 568, 722–734. [Google Scholar] [CrossRef] - Niu, W.J.; Feng, Z.K.; Cheng, C.T.; Wu, X.Y. A parallel multi-objective particle swarm optimization for cascade hydropower reservoir operation in southwest China. Appl. Soft Comput. J.
**2018**, 70, 562–575. [Google Scholar] [CrossRef] - Ming, B.; Chang, J.X.; Huang, Q.; Wang, Y.M.; Huang, S.Z. Optimal Operation of Multi-Reservoir System Based-On Cuckoo Search Algorithm. Water Resour. Manag.
**2015**, 29, 5671–5687. [Google Scholar] [CrossRef] - Reddy, S.S.; Panigrahi, B.K.; Debchoudhury, S.; Kundu, R.; Mukherjee, R. Short-term hydro-thermal scheduling using CMA-ES with directed target to best perturbation scheme. Int. J. Bio-Inspired Comput.
**2015**, 7, 195–208. [Google Scholar] [CrossRef] - Salkuti, S.R. Short-term optimal hydro-thermal scheduling using clustered adaptive teaching learning based optimization. Int. J. Electr. Comput. Eng.
**2019**, 9, 3359–3365. [Google Scholar] - Niu, W.; Feng, Z.; Cheng, C.; Zhou, J. Forecasting daily runoff by extreme learning machine based on quantum-behaved particle swarm optimization. J. Hydrol. Eng.
**2018**, 23, 04018002. [Google Scholar] [CrossRef] - Zheng, F.; Zecchin, A.C.; Simpson, A.R. Self-adaptive differential evolution algorithm applied to water distribution system optimization. J. Comput. Civ. Eng.
**2013**, 27, 148–158. [Google Scholar] [CrossRef] - Zheng, F.; Simpson, A.R.; Zecchin, A.C. A combined NLP-differential evolution algorithm approach for the optimization of looped water distribution systems. Water Resour. Res.
**2011**, 47. [Google Scholar] [CrossRef] [Green Version] - Feng, Z.K.; Niu, W.J.; Cheng, C.T. Multi-objective quantum-behaved particle swarm optimization for economic environmental hydrothermal energy system scheduling. Energy
**2017**, 131, 165–178. [Google Scholar] [CrossRef] - Bai, T.; Kan, Y.B.; Chang, J.X.; Huang, Q.; Chang, F.J. Fusing feasible search space into PSO for multi-objective cascade reservoir optimization. Appl. Soft Comput. J.
**2017**, 51, 328–340. [Google Scholar] [CrossRef] - Rezaei, F.; Safavi, H.R.; Mirchi, A.; Madani, K. f-MOPSO: An alternative multi-objective PSO algorithm for conjunctive water use management. J. Hydro-Environ. Res.
**2017**, 14, 1–18. [Google Scholar] [CrossRef] - Reddy, S.S.; Bijwe, P.R. Multi-Objective Optimal Power Flow Using Efficient Evolutionary Algorithm. Int. J. Emerg. Electr. Power Syst.
**2017**, 18. [Google Scholar] [CrossRef] - Ji, B.; Yuan, X.; Yuan, Y.; Lei, X.; Fernando, T.; Iu, H.H.C. Exact and heuristic methods for optimizing lock-quay system in inland waterway. Eur. J. Oper. Res.
**2019**, 277, 740–755. [Google Scholar] [CrossRef] - Mirjalili, S.; Lewis, A. Adaptive gbest-guided gravitational search algorithm. Neural Comput. Appl.
**2014**, 25, 1569–1584. [Google Scholar] [CrossRef] - Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci.
**2009**, 179, 2232–2248. [Google Scholar] [CrossRef] - Niu, W.J.; Feng, Z.K.; Zeng, M.; Feng, B.F.; Min, Y.W.; Cheng, C.T.; Zhou, J.Z. Forecasting reservoir monthly runoff via ensemble empirical mode decomposition and extreme learning machine optimized by an improved gravitational search algorithm. Appl. Soft Comput. J.
**2019**, 82, 105589. [Google Scholar] [CrossRef] - Tian, H.; Yuan, X.; Ji, B.; Chen, Z. Multi-objective optimization of short-term hydrothermal scheduling using non-dominated sorting gravitational search algorithm with chaotic mutation. Energy Convers. Manag.
**2014**, 81, 504–519. [Google Scholar] [CrossRef] - Mahootchi, M.; Tizhoosh, H.R.; Ponnambalam, K. Oppositional extension of reinforcement learning techniques. Inf. Sci.
**2014**, 275, 101–114. [Google Scholar] [CrossRef] - Mahdavi, S.; Rahnamayan, S.; Deb, K. Opposition based learning: A literature review. Swarm Evol. Comput.
**2018**, 39, 1–23. [Google Scholar] [CrossRef] - Ewees, A.A.; Abd Elaziz, M.; Houssein, E.H. Improved grasshopper optimization algorithm using opposition-based learning. Expert Syst. Appl.
**2018**, 112, 156–172. [Google Scholar] [CrossRef] - Xia, Y.; Feng, Z.; Niu, W.; Qin, H.; Jiang, Z.; Zhou, J. Simplex quantum-behaved particle swarm optimization algorithm with application to ecological operation of cascade hydropower reservoirs. Appl. Soft Comput.
**2019**, 84, 105715. [Google Scholar] [CrossRef] - Chen, Z.; Yuan, X.; Tian, H.; Ji, B. Improved gravitational search algorithm for parameter identification of water turbine regulation system. Energy Convers. Manag.
**2014**, 78, 306–315. [Google Scholar] [CrossRef] - Mirjalili, S. The ant lion optimizer. Adv. Eng. Softw.
**2015**, 83, 80–98. [Google Scholar] [CrossRef] - Yang, X.; Deb, S. Cuckoo Search via Lévy Flights; IEEE: Piscataway, NJ, USA, 2009; pp. 210–214. [Google Scholar]
- Walton, S.; Hassan, O.; Morgan, K.; Brown, M.R. Modified cuckoo search: A new gradient free optimisation algorithm. Chaos Solitons Fractals
**2011**, 44, 710–718. [Google Scholar] [CrossRef] - Shareef, H.; Ibrahim, A.A.; Mutlag, A.H. Lightning search algorithm. Appl. Soft Comput.
**2015**, 36, 315–333. [Google Scholar] [CrossRef] - Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw.
**2014**, 69, 46–61. [Google Scholar] [CrossRef] - Yang, X.S. Firefly Algorithm in Engineering Optimization; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw.
**2016**, 95, 51–67. [Google Scholar] [CrossRef] - Hua, Z.; Ma, C.; Lian, J.; Pang, X.; Yang, W. Optimal capacity allocation of multiple solar trackers and storage capacity for utility-scale photovoltaic plants considering output characteristics and complementary demand. Appl. Energy
**2019**, 238, 721–733. [Google Scholar] [CrossRef] - Reddy, S.S.; Bijwe, P.R.; Abhyankar, A.R. Optimal dynamic emergency reserve activation using spinning, hydro and demand-side reserves. Front. Energy
**2016**, 10, 409–423. [Google Scholar] [CrossRef] - Reddy, S.S.; Bijwe, P.R. Real time economic dispatch considering renewable energy resources. Renew. Energy
**2015**, 83, 1215–1226. [Google Scholar] [CrossRef] - Feng, Z.K.; Niu, W.J.; Zhang, R.; Wang, S.; Cheng, C.T. Operation rule derivation of hydropower reservoir by k-means clustering method and extreme learning machine based on particle swarm optimization. J. Hydrol.
**2019**, 576, 229–238. [Google Scholar] [CrossRef] - Feng, Z.K.; Niu, W.J.; Cheng, C.T.; Wu, X.Y. Optimization of hydropower system operation by uniform dynamic programming for dimensionality reduction. Energy
**2017**, 134, 718–730. [Google Scholar] [CrossRef] - Zhang, C.; Ding, W.; Li, Y.; Meng, F.; Fu, G. Cost-Benefit Framework for Optimal Design of Water Transfer Systems. J. Water Res. Plan. Manag.
**2019**, 145, 04019007. [Google Scholar] [CrossRef] - Li, H.; Chen, D.; Arzaghi, E.; Abbassi, R.; Xu, B.; Patelli, E.; Tolo, S. Safety assessment of hydro-generating units using experiments and grey-entropy correlation analysis. Energy
**2018**, 165, 222–234. [Google Scholar] [CrossRef] [Green Version] - Chen, D.; Liu, S.; Ma, X. Modeling, nonlinear dynamical analysis of a novel power system with random wind power and it’s control. Energy
**2013**, 53, 139–146. [Google Scholar] [CrossRef] - Zhang, R.; Chen, D.; Ma, X. Nonlinear predictive control of a hydropower system model. Entropy-Switz
**2015**, 17, 6129–6149. [Google Scholar] [CrossRef] - Feng, Z.; Niu, W.; Wang, W.; Zhou, J.; Cheng, C. A mixed integer linear programming model for unit commitment of thermal plants with peak shaving operation aspect in regional power grid lack of flexible hydropower energy. Energy
**2019**, 175, 618–629. [Google Scholar] [CrossRef] - Feng, Z.; Niu, W.; Wang, S.; Cheng, C.; Song, Z. Mixed integer linear programming model for peak operation of gas-fired generating units with disjoint-prohibited operating zones. Energies
**2019**, 12, 2179. [Google Scholar] [CrossRef] - Feng, Z.K.; Niu, W.J.; Cheng, C.T.; Zhou, J.Z. Peak shaving operation of hydro-thermal-nuclear plants serving multiple power grids by linear programming. Energy
**2017**, 135, 210–219. [Google Scholar] [CrossRef] - Niu, W.J.; Feng, Z.K.; Feng, B.F.; Min, Y.W.; Cheng, C.T.; Zhou, J.Z. Comparison of multiple linear regression, artificial neural network, extreme learning machine, and support vector machine in deriving operation rule of hydropower reservoir. Water
**2019**, 11, 88. [Google Scholar] [CrossRef] - Ma, C.; Lian, J.; Wang, J. Short-term optimal operation of Three-gorge and Gezhouba cascade hydropower stations in non-flood season with operation rules from data mining. Energy Convers. Manag.
**2013**, 65, 616–627. [Google Scholar] [CrossRef] - Jiang, Z.; Liu, P.; Ji, C.; Zhang, H.; Chen, Y. Ecological flow considered multi-objective sorage energy operation chart optimization of large-scale mixed reservoirs. J. Hydrol.
**2019**, 577, 123949. [Google Scholar] [CrossRef] - Lian, J.; Yao, Y.; Ma, C.; Guo, Q. Reservoir operation rules for controlling algal blooms in a tributary to the impoundment of three Gorges Dam. Water
**2014**, 6, 3200–3223. [Google Scholar] [CrossRef] - Fu, W.; Wang, K.; Zhang, C.; Tan, J. A hybrid approach for measuring the vibrational trend of hydroelectric unit with enhanced multi-scale chaotic series analysis and optimized least squares support vector machine. Trans. Inst. Meas. Control
**2019**, 41, 4436–4449. [Google Scholar] [CrossRef]

**Figure 3.**Convergence trajectories of the different methods for 12 benchmark functions with 30 variables.

**Figure 4.**The flowchart of enhanced gravitational search algorithm (EGSA) for multi-objective operation of cascade hydropower reservoirs.

Function | D | Range | f_{min} |
---|---|---|---|

${F}_{1}(x)={\displaystyle \sum _{i=1}^{n}{x}_{i}{}^{2}}$ | 30 | [−100,100] | 0 |

${F}_{2}\left(x\right)={\displaystyle \sum _{i=1}^{n}\left|{x}_{i}\right|}+{\displaystyle \prod _{i=1}^{n}\left|{x}_{i}\right|}$ | 30 | [−10,10] | 0 |

${F}_{3}(x)={\displaystyle \sum _{i=1}^{n}({\displaystyle \sum _{j=1}^{i}{x}_{j}}}{)}^{2}$ | 30 | [−100,100] | 0 |

${F}_{4}\left(x\right)=\mathrm{max}\left\{\left|{x}_{i}\right|,1\le i\le n\right\}$ | 30 | [−100,100] | 0 |

${F}_{5}(x)={\displaystyle \sum _{i=1}^{n-1}[100{({x}_{i+1}^{}-{x}_{i}^{2})}^{2}+{({x}_{i}^{}-1)}^{2}]}$ | 30 | [−30,30] | 0 |

${F}_{6}(x)={\displaystyle \sum _{i=1}^{n}{({x}_{i}+0.5)}^{2}}$ | 30 | [−100,100] | 0 |

${F}_{7}(x)={\displaystyle \sum _{i=1}^{n}i{x}_{i}^{4}}+random[0,1)$ | 30 | [−1.28,1.28] | 0 |

${F}_{8}(x)={\displaystyle \sum _{i=1}^{n}-{x}_{i}}\mathrm{sin}(\sqrt{\left|{x}_{i}\right|})$ | 30 | [−500,500] | −418.9 × D |

${F}_{9}(x)={\displaystyle \sum _{i=1}^{n}[{x}_{i}{}^{2}-10\mathrm{cos}(2\pi {x}_{i})+10]}$ | 30 | [−5.12,5.12] | 0 |

$\begin{array}{l}{F}_{10}(x)=-20\mathrm{exp}(-0.2\sqrt[]{\frac{1}{n}{\displaystyle \sum _{i=1}^{n}{x}_{i}^{2}}})-\mathrm{exp}(\frac{1}{n}{\displaystyle \sum _{i=1}^{n}\mathrm{cos}(2\pi {x}_{i}))}\\ \hspace{1em}\hspace{1em}\hspace{1em}+20+e\end{array}$ | 30 | [−32,32] | 0 |

${F}_{11}(x)=\frac{1}{4000}{\displaystyle \sum _{i=1}^{n}{x}_{i}^{2}-{\displaystyle \prod _{i=1}^{n}\mathrm{cos}(\frac{{x}_{i}}{\sqrt{i}}}})+1$ | 30 | [−600,600] | 0 |

$\begin{array}{l}{F}_{12}\left(x\right)=\frac{\pi}{n}\{10{\mathrm{sin}}^{2}(\pi {y}_{1})+{\displaystyle \sum _{i=1}^{n-1}}{({y}_{i}-1)}^{2}[1+10{\mathrm{sin}}^{2}(\pi {y}_{i+1})]\\ \hspace{1em}\hspace{1em}\hspace{1em}\hspace{1em}+{({y}_{n}-1)}^{2}\}+{\displaystyle \sum _{i=1}^{n}u({x}_{i}},10,100,4)\\ \hspace{1em}\hspace{1em}\hspace{1em}{y}_{i}=1+\frac{{x}_{i}+1}{4},u({x}_{i},a,k,m)=\{\begin{array}{l}k{({x}_{i}-a)}^{m}\text{\hspace{1em}\hspace{1em}\hspace{1em}\hspace{1em}}{x}_{i}>a\\ 0\text{\hspace{1em}\hspace{1em}\hspace{1em}\hspace{1em}\hspace{1em}\hspace{1em}\hspace{1em}}a\le {x}_{i}<a\\ \hspace{1em}k{(-{x}_{i}-a)}^{m}\text{\hspace{1em}\hspace{1em}}{x}_{i}<-a\end{array}\end{array}$ | 30 | [−50,50] | 0 |

Function | Item | CS | MCS | LSA | GWO | FA | WOA | ALO | DE | PSO | SCA | GSA | EGSA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|

F_{1} | Ave. | 9.06 × 10^{1} | 1.01 × 10^{0} | 4.81 × 10^{−8} | 6.59 × 10^{−28} | 1.20 × 10^{−2} | 1.41 × 10^{−30} | 2.59 × 10^{−10} | 7.80 × 10^{−6} | 4.58 × 10^{−7} | 2.87 × 10^{−35} | 4.00 × 10^{−9} | 6.96 × 10^{−134} |

Std. | 2.62 × 10^{1} | 2.72 × 10^{−1} | 3.40 × 10^{−7} | 6.34 × 10^{−5} | 4.30 × 10^{−3} | 4.91 × 10^{−30} | 1.65 × 10^{−10} | 3.14 × 10^{−6} | 3.51 × 10^{−7} | 1.26 × 10^{−34} | 2.92 × 10^{−9} | 3.70 × 10^{−133} | |

F_{2} | Ave. | 9.70 × 10^{0} | 1.81 × 10^{−1} | 3.68 × 10^{−2} | 7.18 × 10^{−17} | 3.73 × 10^{−1} | 1.06 × 10^{−21} | 1.84 × 10^{−6} | 3.73 × 10^{−4} | 1.19 × 10^{−4} | 2.21 × 10^{−27} | 5.48 × 10^{−5} | 5.21 × 10^{−69} |

Std. | 1.98 × 10^{0} | 3.31 × 10^{−2} | 1.56 × 10^{−1} | 2.90 × 10^{−2} | 1.01 × 10^{−1} | 2.39 × 10^{−21} | 6.58 × 10^{−7} | 9.05 × 10^{−5} | 8.03 × 10^{−5} | 6.99 × 10^{−27} | 2.24 × 10^{−5} | 2.09 × 10^{−68} | |

F_{3} | Ave. | 3.84 × 10^{3} | 4.62 × 10^{2} | 4.32 × 10^{1} | 3.29 × 10^{−6} | 1.81 × 10^{3} | 5.39 × 10^{−7} | 6.06 × 10^{−10} | 2.94 × 10^{4} | 2.33 × 10^{0} | 9.74 × 10^{1} | 3.61 × 10^{2} | 4.30 × 10^{−119} |

Std. | 7.24 × 10^{2} | 1.23 × 10^{2} | 2.99 × 10^{1} | 7.91 × 10^{1} | 6.60 × 10^{2} | 2.93 × 10^{−6} | 6.34 × 10^{−10} | 4.13 × 10^{3} | 1.14 × 10^{0} | 2.24 × 10^{2} | 1.45 × 10^{2} | 2.29 × 10^{−118} | |

F_{4} | Ave. | 7.23 × 10^{0} | 1.73 × 10^{0} | 1.49 × 10^{0} | 5.61 × 10^{−7} | 7.67 × 10^{−2} | 7.26 × 10^{−2} | 1.36 × 10^{−8} | 1.43 × 10^{0} | 5.35 × 10^{−1} | 2.66 × 10^{0} | 9.48 × 10^{−2} | 5.58 × 10^{−70} |

Std. | 6.76 × 10^{−1} | 5.12 × 10^{−1} | 1.30 × 10^{0} | 1.32 × 10^{0} | 1.46 × 10^{−2} | 3.97 × 10^{−1} | 1.81 × 10^{−9} | 3.21 × 10^{−1} | 1.33 × 10^{−1} | 4.16 × 10^{0} | 3.92 × 10^{−1} | 2.12 × 10^{−69} | |

F_{5} | Ave. | 4.98 × 10^{0} | 5.81 × 10^{1} | 6.43 × 10^{1} | 2.68 × 10^{1} | 1.28 × 10^{2} | 2.79 × 10^{1} | 3.47 × 10^{−1} | 4.45 × 10^{2} | 1.64 × 10^{2} | 2.74 × 10^{1} | 3.45 × 10^{1} | 2.69 × 10^{1} |

Std. | 1.75 × 10^{0} | 3.31 × 10^{1} | 4.38 × 10^{1} | 6.99 × 10^{1} | 2.79 × 10^{2} | 7.64 × 10^{−1} | 1.10 × 10^{−1} | 1.55 × 10^{2} | 1.55 × 10^{2} | 3.85 × 10^{−1} | 3.65 × 10^{1} | 9.72 × 10^{−2} | |

F_{6} | Ave. | 4.31 × 10^{4} | 4.44 × 10^{3} | 3.34 × 10^{0} | 8.17 × 10^{−1} | 0 | 3.12 × 10^{0} | 2.56 × 10^{−10} | 7.94 × 10^{−6} | 9.29 × 10^{−7} | 5.30 × 10^{−2} | 4.99 × 10^{−9} | 8.23 × 10^{−15} |

Std. | 7.21 × 10^{3} | 7.52 × 10^{2} | 2.09 × 10^{0} | 1.26 × 10^{−4} | 0 | 5.32 × 10^{−1} | 1.09 × 10^{−10} | 3.39 × 10^{−6} | 1.93 × 10^{−6} | 4.98 × 10^{−2} | 3.74 × 10^{−9} | 4.61 × 10^{−15} | |

F_{7} | Ave. | 2.46 × 10^{−2} | 9.10 × 10^{−3} | 2.41 × 10^{−2} | 2.21 × 10^{−3} | 3.52 × 10^{−2} | 1.43 × 10^{−3} | 4.29 × 10^{−3} | 1.35 × 10^{−1} | 3.55 × 10^{0} | 7.48 × 10^{−3} | 3.05 × 10^{−2} | 4.76 × 10^{−4} |

Std. | 7.90 × 10^{−3} | 2.20 × 10^{−3} | 5.72 × 10^{−3} | 1.00 × 10^{−1} | 2.40 × 10^{−2} | 1.15 × 10^{−3} | 5.09 × 10^{−3} | 2.93 × 10^{−2} | 4.79 × 10^{0} | 6.96 × 10^{−3} | 1.59 × 10^{−2} | 2.32 × 10^{−4} | |

F_{8} | Ave. | −8.98 × 10^{3} | −9.80 × 10^{3} | −8.00 × 10^{3} | −6.12 × 10^{3} | −5.90 × 10^{3} | −5.08 × 10^{3} | −1.61 × 10^{3} | −7.95 × 10^{3} | −6.39 × 10^{3} | −5.66 × 10^{3} | −2.75 × 10^{3} | −1.19 × 10^{4} |

Std. | 1.98 × 10^{2} | 5.31 × 10^{2} | 6.69 × 10^{2} | 4.09 × 10^{3} | 6.56 × 10^{2} | 6.96 × 10^{2} | 3.14 × 10^{2} | 3.33 × 10^{2} | 1.29 × 10^{3} | 3.52 × 10^{2} | 4.00 × 10^{2} | 3.13 × 10^{2} | |

F_{9} | Ave. | 2.94 × 10^{2} | 1.35 × 10^{2} | 6.28 × 10^{1} | 3.11 × 10^{−1} | 2.63 × 10^{1} | 0 | 7.71 × 10^{−6} | 1.32 × 10^{2} | 7.87 × 10^{1} | 1.87 × 10^{−9} | 1.67 × 10^{1} | 0 |

Std. | 1.43 × 10^{1} | 2.16 × 10^{1} | 1.49 × 10^{1} | 4.74 × 10^{1} | 9.15 × 10^{0} | 0 | 8.45 × 10^{−6} | 8.78 × 10^{0} | 2.91 × 10^{1} | 1.02 × 10^{−8} | 3.82 × 10^{0} | 0 | |

F_{10} | Ave. | 1.93 × 10^{1} | 1.21 × 10^{1} | 2.69 × 10^{0} | 1.06 × 10^{−13} | 5.12 × 10^{−2} | 7.40 × 10^{0} | 3.73 × 10^{−15} | 1.37 × 10^{−3} | 5.99 × 10^{−4} | 1.34 × 10^{1} | 3.25 × 10^{−5} | 3.64 × 10^{−15} |

Std. | 3.50 × 10^{−1} | 7.52 × 10^{−1} | 9.11 × 10^{−1} | 7.78 × 10^{−2} | 1.37 × 10^{−2} | 9.90 × 10^{0} | 1.50 × 10^{−15} | 8.85 × 10^{−4} | 5.43 × 10^{−4} | 9.64 × 10^{0} | 1.10 × 10^{−5} | 1.08 × 10^{−15} | |

F_{11} | Ave. | 2.12 × 10^{2} | 8.32 × 10^{0} | 7.24 × 10^{−3} | 4.49 × 10^{−3} | 5.84 × 10^{−3} | 2.89 × 10^{−4} | 1.86 × 10^{−2} | 3.36 × 10^{−3} | 6.98 × 10^{−3} | 1.86 × 10^{−5} | 4.34 × 10^{0} | 0 |

Std. | 3.97 × 10^{1} | 1.54 × 10^{0} | 6.70 × 10^{−3} | 6.66 × 10^{−3} | 1.43 × 10^{−3} | 1.59 × 10^{−3} | 9.55 × 10^{−3} | 1.06 × 10^{−2} | 8.16 × 10^{−3} | 1.02 × 10^{−4} | 1.66 × 10^{0} | 0 | |

F_{12} | Ave. | 1.47 × 10^{0} | 1.38 × 10^{−1} | 3.58 × 10^{−1} | 5.34 × 10^{−2} | 2.40 × 10^{−4} | 3.40 × 10^{−1} | 9.74 × 10^{−12} | 6.87 × 10^{−1} | 2.01 × 10^{−2} | 8.52 × 10^{−3} | 9.59 × 10^{−2} | 5.30 × 10^{−17} |

Std. | 3.61 × 10^{−1} | 2.86 × 10^{−1} | 7.44 × 10^{−1} | 2.07 × 10^{−2} | 1.00 × 10^{−4} | 2.15 × 10^{−1} | 9.33 × 10^{−12} | 3.05 × 10^{−1} | 2.26 × 10^{−2} | 4.69 × 10^{−3} | 1.75 × 10^{−1} | 1.92 × 10^{−17} |

**Table 3.**The results of Wilcoxon test for a single problem for statistical significance level at alpha = 0.05.

Function | EGSA–CS | EGSA–MCS | EGSA–LSA | EGSA–GWO | EGSA–FA | EGSA–WOA | EGSA–ALO | EGSA–DE | EGSA–PSO | EGSA–SCA | EGSA–GSA |
---|---|---|---|---|---|---|---|---|---|---|---|

F_{1} | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA |

F_{2} | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA |

F_{3} | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA |

F_{4} | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA |

F_{5} | CS | EGSA | EGSA | GWO | EGSA | EGSA | ALO | EGSA | EGSA | EGSA | EGSA |

F_{6} | EGSA | EGSA | EGSA | EGSA | FA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA |

F_{7} | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA |

F_{8} | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA |

F_{9} | EGSA | EGSA | EGSA | EGSA | EGSA | Tie | EGSA | EGSA | EGSA | EGSA | EGSA |

F_{10} | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA |

F_{11} | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA |

F_{12} | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA | EGSA |

W/T/L | 11/0/1 | 12/0/0 | 12/0/0 | 11/0/1 | 11/0/1 | 11/1/0 | 11/0/1 | 12/0/0 | 12/0/0 | 12/0/0 | 12/0/0 |

**Table 4.**The results of Wilcoxon signed-rank test for statistically significance level at alpha = 0.05.

Item | EGSA–CS | EGSA–MCS | EGSA–LSA | EGSA–GWO | EGSA–FA | EGSA–WOA | EGSA–ALO | EGSA–DE | EGSA–PSO | EGSA–SCA | EGSA–GSA |
---|---|---|---|---|---|---|---|---|---|---|---|

R^{+} | 72 | 78 | 78 | 70 | 77 | 77.5 | 67 | 78 | 78 | 78 | 78 |

R^{−} | 6 | 0 | 0 | 8 | 1 | 0.5 | 11 | 0 | 0 | 0 | 0 |

p-value | 6.84 × 10^{−3} | 4.88 × 10^{−4} | 4.88 × 10^{−4} | 1.22 × 10^{−2} | 9.77 × 10^{−4} | 9.77 × 10^{−4} | 2.69 × 10^{−2} | 4.88 × 10^{−4} | 4.88 × 10^{−4} | 4.88 × 10^{−4} | 4.88 × 10^{−4} |

Significant | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ |

**Table 5.**Statistical results of the 5 methods in 20 independent runs for 4 cases of power generation (10

^{4}kW·h).

Case | Method | Best | Worst | Average | Standard Deviation | Range |
---|---|---|---|---|---|---|

Case 1 | DE | 5388.10 | 5386.25 | 5387.19 | 0.56 | 1.85 |

PSO | 5393.67 | 5391.27 | 5392.49 | 0.57 | 2.40 | |

SCA | 5388.26 | 5384.34 | 5385.65 | 0.89 | 3.92 | |

GSA | 5388.37 | 5385.34 | 5386.76 | 0.88 | 3.03 | |

EGSA | 5396.87 | 5396.81 | 5396.86 | 0.02 | 0.06 | |

Case 2 | DE | 6439.12 | 6434.22 | 6436.14 | 1.43 | 4.90 |

PSO | 6445.48 | 6442.35 | 6444.12 | 0.79 | 3.13 | |

SCA | 6439.06 | 6435.25 | 6437.07 | 1.03 | 3.81 | |

GSA | 6440.17 | 6437.00 | 6438.55 | 0.79 | 3.17 | |

EGSA | 6450.34 | 6450.33 | 6450.33 | 0.01 | 0.01 | |

Case3 | DE | 4977.94 | 4976.38 | 4977.17 | 0.40 | 1.56 |

PSO | 4981.62 | 4979.71 | 4980.58 | 0.55 | 1.91 | |

SCA | 4975.51 | 4973.58 | 4974.54 | 0.58 | 1.93 | |

GSA | 4976.74 | 4973.83 | 4975.25 | 0.71 | 2.91 | |

EGSA | 4984.56 | 4984.54 | 4984.55 | 0.01 | 0.02 | |

Case4 | DE | 4433.08 | 4431.68 | 4432.32 | 0.44 | 1.40 |

PSO | 4435.89 | 4434.23 | 4435.11 | 0.49 | 1.66 | |

SCA | 4431.51 | 4428.62 | 4429.58 | 0.70 | 2.89 | |

GSA | 4431.61 | 4429.07 | 4430.37 | 0.64 | 2.54 | |

EGSA | 4438.33 | 4438.32 | 4438.33 | 0.01 | 0.01 |

Runoff | Method | HJD | DF | SFY | WJD | GPT | Sum |
---|---|---|---|---|---|---|---|

Case 1 | DE | 726.73 | 646.19 | 527.41 | 1106.65 | 2381.12 | 5388.10 |

PSO | 728.66 | 647.76 | 526.51 | 1107.99 | 2382.75 | 5393.67 | |

SCA | 727.92 | 644.60 | 527.68 | 1106.77 | 2381.29 | 5388.26 | |

GSA | 728.35 | 647.35 | 526.77 | 1107.15 | 2378.75 | 5388.37 | |

EGSA | 728.84 | 646.94 | 530.33 | 1108.10 | 2382.66 | 5396.87 | |

Case 2 | DE | 869.46 | 770.94 | 632.25 | 1322.47 | 2844.00 | 6439.12 |

PSO | 871.70 | 774.09 | 627.59 | 1325.38 | 2846.72 | 6445.48 | |

SCA | 871.15 | 771.70 | 628.34 | 1322.76 | 2845.11 | 6439.06 | |

GSA | 871.48 | 774.01 | 627.42 | 1324.03 | 2843.23 | 6440.17 | |

EGSA | 871.58 | 773.17 | 633.84 | 1324.91 | 2846.84 | 6450.34 | |

Case 3 | DE | 234.57 | 400.46 | 461.27 | 1052.33 | 2829.31 | 4977.94 |

PSO | 235.21 | 402.56 | 459.19 | 1054.13 | 2830.53 | 4981.62 | |

SCA | 233.99 | 401.01 | 459.94 | 1052.01 | 2828.56 | 4975.51 | |

GSA | 235.02 | 402.45 | 457.71 | 1053.20 | 2828.36 | 4976.74 | |

EGSA | 235.50 | 401.67 | 462.62 | 1054.23 | 2830.54 | 4984.56 | |

Case 4 | DE | 208.46 | 355.81 | 411.02 | 936.99 | 2520.8 | 4433.08 |

PSO | 208.58 | 358.21 | 409.24 | 938.46 | 2521.4 | 4435.89 | |

SCA | 208.26 | 356.74 | 409.21 | 937.08 | 2520.22 | 4431.51 | |

GSA | 208.82 | 357.66 | 408.43 | 937.47 | 2519.23 | 4431.61 | |

EGSA | 209.13 | 357.35 | 411.88 | 938.51 | 2521.46 | 4438.33 |

Season | Item | Best | Worst | Average | Standard Deviation | Range |
---|---|---|---|---|---|---|

Spring | DE | 32,130.69 | 32,183.80 | 32,153.90 | 16.22 | 53.11 |

PSO | 32,052.91 | 32,127.22 | 32,084.17 | 20.24 | 74.31 | |

SCA | 32,160.67 | 32,230.89 | 32,194.00 | 22.32 | 70.22 | |

GSA | 32,173.70 | 32,224.22 | 32,199.76 | 14.41 | 50.52 | |

EGSA | 31,986.47 | 31,986.62 | 31,986.53 | 0.04 | 0.15 | |

Summer | DE | 33,006.63 | 33,093.05 | 33,051.56 | 23.51 | 86.42 |

PSO | 32,962.41 | 33,057.03 | 32,993.63 | 22.72 | 94.62 | |

SCA | 33,032.40 | 33,129.77 | 33,100.08 | 24.05 | 97.37 | |

GSA | 33,069.24 | 33,134.56 | 33,097.29 | 19.83 | 65.32 | |

EGSA | 32,888.05 | 32,888.16 | 32,888.10 | 0.03 | 0.11 | |

Autumn | DE | 36,681.47 | 36,752.01 | 36,719.49 | 17.51 | 70.54 |

PSO | 36,595.43 | 36,714.71 | 36,667.14 | 30.32 | 119.28 | |

SCA | 36,745.91 | 36,840.43 | 36,781.14 | 24.73 | 94.52 | |

GSA | 36,738.72 | 36,835.34 | 36,802.57 | 27.25 | 96.62 | |

EGSA | 36,536.95 | 36,537.06 | 36,537.00 | 0.03 | 0.11 | |

Winter | DE | 35,825.89 | 35,890.14 | 35,857.52 | 14.79 | 64.25 |

PSO | 35,762.63 | 35,850.26 | 35,811.97 | 23.97 | 87.63 | |

SCA | 35,822.72 | 35,950.51 | 35,896.25 | 32.32 | 127.79 | |

GSA | 35,879.31 | 35,965.39 | 35,931.63 | 22.63 | 86.08 | |

EGSA | 35,671.70 | 35,671.80 | 35,671.74 | 0.03 | 0.10 |

Season | Method | Item | Peak | Valley | Peak-valley | Average | Standard Deviation |
---|---|---|---|---|---|---|---|

Spring | Original | 13,477.93 | 10,101.60 | 3376.33 | 11,910.93 | 1281.95 | |

DE | Optimization | 10,952.90 | 7716.77 | 3236.13 | 9242.92 | 789.32 | |

Reduction | 2525.03 | 2384.83 | 140.20 | 2668.01 | 492.63 | ||

PSO | Optimization | 10,050.98 | 8169.90 | 1881.08 | 9231.64 | 640.11 | |

Reduction | 3426.95 | 1931.7 | 1495.25 | 2679.29 | 641.84 | ||

SCA | Optimization | 10,752.18 | 7809.30 | 2942.88 | 9239.61 | 926.13 | |

Reduction | 2725.75 | 2292.3 | 433.45 | 2671.32 | 355.82 | ||

GSA | Optimization | 10,737.30 | 7592.29 | 3145.01 | 9229.75 | 1058.60 | |

Reduction | 2740.63 | 2509.31 | 231.32 | 2681.18 | 223.35 | ||

EGSA | Optimization | 9428.01 | 8987.22 | 440.79 | 9232.28 | 165.13 | |

Reduction | 4049.92 | 1114.38 | 2935.54 | 2678.65 | 1116.82 | ||

Summer | Original | 14,119.78 | 10,342.98 | 3776.80 | 12,170.94 | 1302.21 | |

DE | Optimization | 11,151.13 | 8535.00 | 2616.13 | 9505.54 | 670.54 | |

Reduction | 2968.65 | 1807.98 | 1160.67 | 2665.40 | 631.67 | ||

PSO | Optimization | 10,610.47 | 8392.24 | 2218.23 | 9492.57 | 673.27 | |

Reduction | 3509.31 | 1950.74 | 1558.57 | 2678.37 | 628.94 | ||

SCA | Optimization | 10,749.92 | 7591.09 | 3158.83 | 9500.12 | 839.87 | |

Reduction | 3369.86 | 2751.89 | 617.97 | 2670.82 | 462.34 | ||

GSA | Optimization | 11,379.10 | 7774.71 | 3604.39 | 9493.04 | 1028.32 | |

Reduction | 2740.68 | 2568.27 | 172.41 | 2677.90 | 273.89 | ||

EGSA | Optimization | 9759.71 | 9234.99 | 524.72 | 9492.46 | 172.66 | |

Reduction | 4360.07 | 1107.99 | 3252.08 | 2678.48 | 1129.55 | ||

Autumn | Original | 14,773.84 | 10,786.00 | 3987.84 | 13,220.16 | 1528.83 | |

DE | Optimization | 12,615.24 | 8928.53 | 3686.71 | 10,553.86 | 880.28 | |

Reduction | 2158.6 | 1857.5 | 301.1 | 2666.3 | 648.6 | ||

PSO | Optimization | 11,234.24 | 9366.35 | 1867.89 | 10,547.10 | 613.62 | |

Reduction | 3539.6 | 1419.65 | 2119.95 | 2673.06 | 915.21 | ||

SCA | Optimization | 11,891.57 | 8142.23 | 3749.34 | 10,552.90 | 1099.32 | |

Reduction | 2882.27 | 2643.77 | 238.50 | 2667.26 | 429.51 | ||

GSA | Optimization | 12,649.33 | 8347.14 | 4302.19 | 10,541.04 | 1193.12 | |

Reduction | 2124.51 | 2438.86 | −314.35 | 2679.12 | 335.71 | ||

EGSA | Optimization | 10,760.16 | 10,182.25 | 577.91 | 10,545.07 | 221.99 | |

Reduction | 4013.68 | 603.75 | 3409.93 | 2675.09 | 1306.84 | ||

Winter | Original | 14,913.26 | 11,028.24 | 3885.02 | 12,971.28 | 1489.76 | |

DE | Optimization | 11,709.53 | 8772.72 | 2936.81 | 10,303.38 | 955.49 | |

Reduction | 3203.73 | 2255.52 | 948.21 | 2667.90 | 534.27 | ||

PSO | Optimization | 11,884.52 | 8637.32 | 3247.20 | 10,293.13 | 970.91 | |

Reduction | 3028.74 | 2390.92 | 637.82 | 2678.15 | 518.85 | ||

SCA | Optimization | 12,391.09 | 8667.77 | 3723.32 | 10,301.54 | 1052.86 | |

Reduction | 2522.17 | 2360.47 | 161.70 | 2669.74 | 436.90 | ||

GSA | Optimization | 11,946.42 | 8414.17 | 3532.25 | 10,293.50 | 1174.01 | |

Reduction | 2966.84 | 2614.07 | 352.77 | 2677.78 | 315.75 | ||

EGSA | Optimization | 10,568.93 | 10,012.57 | 556.36 | 10,295.50 | 208.98 | |

Reduction | 4344.33 | 1015.67 | 3328.66 | 2675.78 | 1280.78 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Feng, Z.-k.; Liu, S.; Niu, W.-j.; Jiang, Z.-q.; Luo, B.; Miao, S.-m.
Multi-Objective Operation of Cascade Hydropower Reservoirs Using TOPSIS and Gravitational Search Algorithm with Opposition Learning and Mutation. *Water* **2019**, *11*, 2040.
https://doi.org/10.3390/w11102040

**AMA Style**

Feng Z-k, Liu S, Niu W-j, Jiang Z-q, Luo B, Miao S-m.
Multi-Objective Operation of Cascade Hydropower Reservoirs Using TOPSIS and Gravitational Search Algorithm with Opposition Learning and Mutation. *Water*. 2019; 11(10):2040.
https://doi.org/10.3390/w11102040

**Chicago/Turabian Style**

Feng, Zhong-kai, Shuai Liu, Wen-jing Niu, Zhi-qiang Jiang, Bin Luo, and Shu-min Miao.
2019. "Multi-Objective Operation of Cascade Hydropower Reservoirs Using TOPSIS and Gravitational Search Algorithm with Opposition Learning and Mutation" *Water* 11, no. 10: 2040.
https://doi.org/10.3390/w11102040