Impacts of Climate Change Scenarios on Non-Point Source Pollution in the Saemangeum Watershed, South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Input Data
2.2. Climate Change Scenarios and Future Climate Changes
2.3. Model Setup and Description
2.4. Model Calibration and Validation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Korea Meteorological Administration (KMA). Climate Change Projection Report on Korean Peninsula, Seoul, Republic of Korea. 2012. Available online: http://www.climate.go.kr/home/ (accessed on 31 December 2012).
- Ouyang, W.; Hao, F.H.; Wang, X.I. Regional Nonpoint source organic pollution modeling and critical area identification for watershed best environmental management. Water Air Soil Pollut. 2008, 187, 251–261. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. Am. Soc. Agric. Biol. Eng. 2007, 50, 885–900. [Google Scholar]
- Yasin, H.Q.; Clemente, R.S. Application of SWAT model for hydrologic and water quality modeling in Thachin River Basin, Thailand. Arab J. Sci. Eng. 2014, 39, 1671–1684. [Google Scholar] [CrossRef]
- Winchell, M.; Srinivasan, R.; Luzio, M.D.; Arnold, J. ArcSWAT Interface for SWAT 2009 USDA Agricultural Research Service. Texas A&M Blackland Research Center: Temple, Texas, 2010. Available online: https://swat.tamu.edu/media/114647/2014-brazil-swat-conference-proceedings-secured.pdf (accessed on 30 July 2014).
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The soil and water assessment tool: Historical development, applications, and future research directions. Trans. Am. Soc. Agric. Biol. Eng. 2017, 50, 1211–1250. [Google Scholar] [CrossRef]
- Choi, K.S.; Lee, S.G.; Jang, J.R. Vegetative filter strip (vfs) applications for runoff and pollution management in the Saemangeum area of Korea. J. Irrig. Drain. 2016, 65, 168–174. [Google Scholar] [CrossRef]
- Woo, H.J.; Jang, T.; Choi, J.K.; Son, J.K. Prioritizing sub-watersheds for non-point source pollution management in Saemangeum watershed using AHP technique. J. Korean Soc. Rural Plan. 2015, 21, 101–112. [Google Scholar] [CrossRef]
- Oh, C.; Cho, J.; Choi, J.; Cho, Y. Prediction of desalination time of Saemangeum reservoir. Irrig. Drain. 2016, 65, 221–229. [Google Scholar] [CrossRef]
- Kim, M.S.; Park, S.W.; Jang, N.J.; Kwak, D.H. Statistical analysis of water infrastructure characteristics: Case study of Saemangeum watershed. J. Water Resour. 2016, 43, 58–65. [Google Scholar] [CrossRef]
- Monica, N.; Choi, K.S. Temporal and spatial analysis of water quality in Saemangeum watershed using multivariate statistical techniques. Paddy Water Environ. 2016, 14, 3–17. [Google Scholar] [CrossRef]
- Cho, J.P.; Oh, C.; Choi, J.; Cho, Y. Climate change impacts on agricultural non-point source pollution with consideration of uncertainty in CMIP5. J. Irrig. Drain. 2016, 65, 209–220. [Google Scholar] [CrossRef]
- Gantidis, N.; Pervolarakis, M.; Fytianos, K. Assessment of the quality characteristics of two Lakes (Koronia and Volvi) of N. Greece. Environ. Monit. Assess. 2007, 125, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Griensven, A.; Van Liew, M.W.; et al. SWAT: Model use, calibration, and validation. Trans. Am. Soc. Agric. Biol. Eng. 2012, 55, 1491–1508. [Google Scholar]
- Won, J.S.; Kim, S.W. ERS SAR Interferometry for Tidal Flat DEM. Proc. of FRINGE 2003 Workshop. Frascati, Italy, 2003. Available online: http://adsabs.harvard.edu/abs/2004ESASP.550E..16W (accessed on 5 December 2003).
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009. Texas Water Resources Institute, 2011. Available online: http://hdl.handle.net /1969.1/128050 (accessed on 1 September 2011).
- Ravichandran, S. Hydrological influences on the water quality trends in Tamiraparani basin, South India. Environ. Monit. Assess. 2003, 87, 293–309. [Google Scholar] [CrossRef]
- Cho, J.; Cho, W.; Jung, I. Statistical Downscaling Toolkit for Climate Change Scenario Using Non Parametric Quantile Mapping. 2018. Available online: https://cran.r-projectorg/web/packages/rSQM/.index.html (accessed on 14 February 2016).
- Wang, Y.; Bian, J.M.; Zhao, Y.S.; Tang, J.; Zhuo, J. Assessment of future climate change impacts on nonpoint source pollution in snowmelt period for a cold area using SWAT. Sci. Rep. 2018, 8, 2402. [Google Scholar] [CrossRef]
- Mekong River Committee. Decision Support Framework-SWAT and IQQM Models. 2004, p. 11. Available online: https://www.riob.org/en/file/264414/download?token=bzMrPwUO (accessed on 20 March 2004).
- Qiu, Z.; Wang, L. Hydrological and water quality assessment in a suburban watershed with mixed land uses using the SWAT model. J. Hydrol. Eng. 2014, 19, 816–827. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modeling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual model. Part 1—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Y.; Guo, H.; He, D. Combining the SWAT model with sequential uncertainty fitting algorithm for streamflow prediction and uncertainty analysis for the Lake Dianchi Basin, China. Hydrol. Process. 2012, 28, 521–533. [Google Scholar] [CrossRef]
- Mutenyo, I.; Nejadhashemi, A.P.; Woznicki, S.A.; Giri, S. Evaluation of SWAT performance on a mountainous watershed in tropical Africa. Hydrol. Curr. Res. 2013, S14, 001. [Google Scholar]
No. | GCM | Resolution (Degree) | Institution |
---|---|---|---|
1 | BCC-CSM1–1-M | 1.125 × 1.122 | Beijing Climate Center, China Meteorological Administration |
2 | HadGEM2-CC | 1.875 × 1.250 | Met Office Hadley Centre |
3 | INM-CM4 | 2.000 × 1.500 | Institute for Numerical Mathematics |
4 | GFDL-ESM2G | 2.500 × 2.023 | Geophysical Fluid Dynamics Laboratory |
5 | CanESM2 | 2.813 × 2.791 | Canadian Centre for Climate Modelling and Analysis |
6 | MIROC-ESM | 2.813 × 2.791 | Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute (The University of Tokyo), and National Institute for Environmental Studies |
Climate Variable | Baseline 1997–2018 | Scenario | 2019–2059 | 2060–2099 | ||
---|---|---|---|---|---|---|
Sim. | Var. | Sim. | Var. | |||
Annual average of daily max. temperature (°C) | 19.3 | RCP 4.5 | 21.1 | 1.8 | 22.4 | 3.1 |
RCP 8.5 | 21.6 | 2.3 | 24.7 | 5.4 | ||
Annual average of daily min. temperature (°C) | 9.1 | RCP 4.5 | 10.8 | 1.7 | 12.2 | 3.1 |
RCP 8.5 | 11.4 | 2.3 | 14.8 | 5.7 | ||
Annual precipitation (mm) | 1315.2 | RCP 4.5 | 1386.1 | 70.9 | 1485.8 | 170.6 |
RCP 8.5 | 1434.4 | 119.3 | 1548.9 | 233.8 |
Parameter | Definition | LB | UB | |
---|---|---|---|---|
Streamflow | CN2 | Soil conservation service runoff curve number for moisture condition II | 35 | 98 |
GWQMN | Threshold depth of water in shallow aquifer required for return flow to occur (mm H2O) | 0 | 5000 | |
SOL_K | Saturated hydraulic conductivity (mm/h) | 0 | 2000 | |
SOL_AWC | Available water capacity | 0 | 1 | |
HRU_SLP | Average slope steepness | 0 | 0.6 | |
GW_DELAY | Groundwater delay time (days) | 0 | 500 | |
Sediment | USLE_P | Universal soil loss equation support practice factor | 0.08 | 0.54 |
USLE_K | Universal soil loss equation soil erodibility factor | 0 | 0.65 | |
CH_COV1 | Channel erodibility factor | 0 | 0.6 | |
CH_COV2 | Channel cover factor | 0 | 1 | |
TN | CMN | Rate factor for humus mineralization of active organic nitrogen | 0.001 | 0.003 |
SOL_NO3 | Initial NO3 concentration in the soil layer | 0 | 100 | |
BIOMIX | Biological mixing efficient | 0 | 1 | |
TP | PPERCO | Phosphorus percolation coefficient | 10 | 17.5 |
ERORGP | Organic P enrichment ratio | 0 | 5 | |
SOL_ORGP | Initial organic P concentration in surface soil layer | 0 | 100 | |
PHOSKD | Phosphorus soil partitioning coefficient | 100 | 200 |
Sub-Watershed | Statistics | Flows (m3/s) | Sediment (ton/day) | TN Loads (kg/day) | TP Loads (kg/day) | ||||
---|---|---|---|---|---|---|---|---|---|
Cali. | Vali. | Cali. | Vali. | Cali. | Vali. | Cali. | Vali. | ||
1 | R2 | 0.66 | 0.5 | 0.68 | 0.42 | 0.41 | 0.24 | 0.45 | 0.18 |
NSE | 0.62 | 0.48 | 0.52 | 0.37 | 0.38 | 0.16 | 0.42 | 0.17 | |
3 | R2 | 0.91 | 0.84 | 0.84 | 0.63 | 0.82 | 0.63 | 0.37 | 0.28 |
NSE | 0.90 | 0.84 | 0.81 | 0.59 | 0.72 | 0.57 | −0.6 | 0.07 | |
5 | R2 | 0.86 | 0.91 | 0.56 | 0.33 | 0.71 | 0.64 | 0.49 | 0.78 |
NSE | 0.85 | 0.87 | −0.18 | −1.87 | 0.70 | 0.6 | 0.48 | 0.25 | |
6 | R2 | 0.93 | 0.90 | 0.54 | 0.48 | 0.88 | 0.65 | 0.78 | 0.61 |
NSE | 0.91 | 0.87 | 0.43 | 0.47 | 0.75 | 0.26 | 0.67 | 0.52 | |
8 | R2 | 0.51 | 0.68 | 0.4 | 0.62 | 0.35 | 0.51 | 0.49 | 0.62 |
NSE | 0.5 | 0.53 | 0.3 | 0.56 | 0.3 | 0.38 | 0.45 | 0.62 |
Sub-Watershed | Flow (m3/s) | Sediment (t/day) | TN Loads (kg/day) | TP Loads (kg/day) | ||||
---|---|---|---|---|---|---|---|---|
Obs. | Sim. | Obs. | Sim. | Obs. | Sim. | Obs. | Sim. | |
1 | 10 | 9.5 | 3.1 | 4.9 | 1848.6 | 1628.9 | 26.6 | 19.8 |
3 | 21.2 | 20.5 | 17.6 | 19.6 | 8119.5 | 6751.4 | 357.1 | 108.1 |
5 | 2.7 | 3.2 | 1.3 | 4.3 | 1033.2 | 1334 | 11.5 | 15.7 |
6 | 8.9 | 8.0 | 7.8 | 8.1 | 5295.4 | 3360.6 | 36 | 33.2 |
8 | 2.3 | 3.1 | 9.2 | 10.8 | 804.7 | 761.5 | 37.1 | 35.6 |
Sub-Watershed | Variable | Baseline 1997–2018 | Scenario | 2019–2059 | 2060–2099 | ||
---|---|---|---|---|---|---|---|
Sim. | Var. | Sim. | Var. | ||||
1 | Streamflow (m3/s) | 10 | RCP 4.5 | 10.6 | 6% | 11.4 | 14% |
RCP 8.5 | 10.9 | 9% | 11.7 | 17% | |||
Sediment (t/km2/day) | 5.2 | RCP 4.5 | 5.4 | 4% | 5.8 | 12% | |
RCP 8.5 | 5.6 | 8% | 6.1 | 17% | |||
TN (kg/km2/day) | 1405 | RCP 4.5 | 1134.2 | −19% | 1080.0 | −23% | |
RCP 8.5 | 1158.8 | −18% | 1150.2 | −18% | |||
TP (kg/km2/day) | 20.5 | RCP 4.5 | 17.5 | −15% | 18.2 | −11% | |
RCP 8.5 | 18.2 | −11% | 19.8 | −3% | |||
3 | Streamflow (m3/s) | 24.4 | RCP 4.5 | 28.0 | 15% | 30.4 | 25% |
RCP 8.5 | 28.5 | 17% | 30.7 | 26% | |||
Sediment (t/km2/day) | 19.3 | RCP 4.5 | 21.7 | 12% | 23.3 | 21% | |
RCP 8.5 | 22.5 | 17% | 24.4 | 26% | |||
TN (kg/km2/day) | 6303.6 | RCP 4.5 | 5475.0 | −13% | 5091.3 | −19% | |
RCP 8.5 | 5575.2 | −12% | 5422.0 | −14% | |||
TP (kg/km2/day) | 239.3 | RCP 4.5 | 108.6 | −55% | 113.5 | −53% | |
RCP 8.5 | 112.0 | −53% | 119.0 | −50% | |||
5 | Streamflow (m3/s) | 3.5 | RCP 4.5 | 4.0 | 14% | 4.4 | 26% |
RCP 8.5 | 4.0 | 14% | 4.4 | 25.7% | |||
Sediment (t/km2/day) | 4.6 | RCP 4.5 | 4.9 | 7% | 5.3 | 15% | |
RCP 8.5 | 5.1 | 11% | 5.5 | 20% | |||
TN (kg/km2/day) | 1219.8 | RCP 4.5 | 1136.1 | −7% | 1056.9 | −13% | |
RCP 8.5 | 1143.4 | −6% | 1110.9 | −9% | |||
TP (kg/km2/day) | 17.1 | RCP 4.5 | 17.8 | 4% | 19.0 | 11% | |
RCP 8.5 | 18.3 | 7% | 19.7 | 15% | |||
6 | Streamflow (m3/s) | 6.7 | RCP 4.5 | 8.6 | 28% | 9.2 | 37% |
RCP 8.5 | 8.6 | 28% | 9.3 | 39% | |||
Sediment (t/km2/day) | 6.9 | RCP 4.5 | 8.6 | 25% | 9.2 | 33% | |
RCP 8.5 | 8.9 | 29% | 9.6 | 39% | |||
TN (kg/km2/day) | 2869.7 | RCP 4.5 | 2309.7 | −20% | 2107.5 | −27% | |
RCP 8.5 | 2360.9 | −18% | 2258.6 | −21% | |||
TP (kg/km2/day) | 29 | RCP 4.5 | 29.9 | 3% | 28.8 | −1% | |
RCP 8.5 | 31.4 | 8% | 30.9 | 7% | |||
8 | Streamflow (m3/s) | 4.7 | RCP 4.5 | 5.9 | 26% | 6.4 | 36% |
RCP 8.5 | 6.1 | 30% | 6.7 | 43% | |||
Sediment (t/km2/day) | 11.4 | RCP 4.5 | 11.7 | 3% | 12.6 | 11% | |
RCP 8.5 | 12.1 | 6% | 13.4 | 18% | |||
TN (kg/km2/day) | 756 | RCP 4.5 | 693.5 | −8% | 684.4 | −9% | |
RCP 8.5 | 710.6 | −6% | 716.6 | −5% | |||
TP (kg/km2/day) | 38.2 | RCP 4.5 | 36.3 | −5% | 39.4 | 3% | |
RCP 8.5 | 38.2 | 0% | 43.1 | 13% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Kim, G. Impacts of Climate Change Scenarios on Non-Point Source Pollution in the Saemangeum Watershed, South Korea. Water 2019, 11, 1982. https://doi.org/10.3390/w11101982
Li T, Kim G. Impacts of Climate Change Scenarios on Non-Point Source Pollution in the Saemangeum Watershed, South Korea. Water. 2019; 11(10):1982. https://doi.org/10.3390/w11101982
Chicago/Turabian StyleLi, Ting, and Gwangseob Kim. 2019. "Impacts of Climate Change Scenarios on Non-Point Source Pollution in the Saemangeum Watershed, South Korea" Water 11, no. 10: 1982. https://doi.org/10.3390/w11101982