Next Article in Journal
Treatment of Organics Contaminated Wastewater by Ozone Micro-Nano-Bubbles
Next Article in Special Issue
Strategies for the Controlled Integration of Food SMEs’ Highly Polluted Effluents into Urban Sanitation Systems
Previous Article in Journal
Upscaling Mixing in Highly Heterogeneous Porous Media via a Spatial Markov Model
Previous Article in Special Issue
At-Site Assessment of a Regional Design Criterium for Water-Demand Peak Factor Evaluation
Article Menu
Issue 1 (January) cover image

Export Article

Open AccessArticle
Water 2019, 11(1), 54; https://doi.org/10.3390/w11010054

Fuzzy Solution to the Unconfined Aquifer Problem

1
Department of Rural and Surveying Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
2
Department of Mathematics Kuwait University, Khaldiya Campus, Safat 13060, Kuwait
3
School of Engineering, Democritus University of Thrace, 67100 Xanthi, Greece
*
Author to whom correspondence should be addressed.
Received: 15 November 2018 / Revised: 19 December 2018 / Accepted: 21 December 2018 / Published: 29 December 2018
(This article belongs to the Special Issue Insights on the Water–Energy–Food Nexus)
  |  
PDF [5552 KB, uploaded 29 December 2018]
  |  

Abstract

In this article, the solution to the fuzzy second order unsteady partial differential equation (Boussinesq equation) is examined, for the case of an aquifer recharging from a lake. In the examined problem, there is a sudden rise and subsequent stabilization of the lake’s water level, thus the aquifer is recharging from the lake. The aquifer boundary conditions are fuzzy and create ambiguities to the solution of the problem. Since the aforementioned problem concerns differential equations, the generalized Hukuhara (gH) derivative was used for total derivatives, as well as the extension of this theory concerning partial derivatives. The case studies proved to follow the generalized Hukuhara (gH) derivative conditions and they offer a unique solution. The development of the aquifer water profile was examined, as well as the calculation of the recharging fuzzy water movement profiles, velocity, and volume, and the results were depicted in diagrams. According to presented results, the hydraulic engineer, being specialist in irrigation projects or in water management, could estimate the appropriate water volume quantity with an uncertainty level, given by the α-cuts. View Full-Text
Keywords: fuzzy partial differential equation; fuzzy water profiles; gH-derivative; fuzzy volume fuzzy partial differential equation; fuzzy water profiles; gH-derivative; fuzzy volume
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Tzimopoulos, C.; Papadopoulos, K.; Evangelides, C.; Papadopoulos, B. Fuzzy Solution to the Unconfined Aquifer Problem. Water 2019, 11, 54.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Water EISSN 2073-4441 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top