Variation Analysis of Streamflows from 1956 to 2016 Along the Yellow River, China
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data Sources
3.2. Methods
3.2.1. Trend Analysis Method
3.2.2. Identification of Abrupt change Point
3.2.3. Period Identification of Wavelet Analysis
4. Results
4.1. Change Process of Annual Streamflow
4.2. Trend Change and Abrupt Change Points
4.3. Period
5. Discussion
5.1. Analysis of Trend
5.1.1. Meteorological and Climatic Factors
5.1.2. Human activities
5.2. Analysis of Change Point
5.3. Analysis of Period
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miao, C.; Ni, J.; Borthwick, A.G.L.; Yang, L. A preliminary estimate of human and natural contributions to the changes in water discharge and sediment load in the Yellow River. Glob. Planet. Chang. 2011, 76, 196–205. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.N.; Yu, C.S.; Zheng, C.Q.; Liu, L.L.; Song, M.H. Characteristic Analysis of Rainfall Variation in Zhuzhaoxin River Basin. Appl. Mech. Mater. 2013, 353–356, 1293–1296. [Google Scholar] [CrossRef]
- Lan, Y.; Zhao, G.; Zhang, Y.; Wen, J.; Liu, J.; Hu, X. Response of runoff in the source region of the Yellow River to climate warming. Quat. Int. 2010, 226, 60–65. [Google Scholar] [CrossRef]
- Rougé, C.; Ge, Y.; Cai, X. Detecting gradual and abrupt changes in hydrological records. Adv. Water Resourc. 2013, 53, 33–44. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Q.; Singh, V.P.; Shi, P.; Sun, P. Hydrological effects of cropland and climatic changes in arid and semi-arid river basins: A case study from the Yellow River basin, China. J. Hydrol. 2017, 549, 547–557. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Z.; Saito, Y.; Liu, J.P.; Sun, X. Interannual and seasonal variation of the Huanghe (Yellow River) water discharge over the past 50 years: Connections to impacts from ENSO events and dams. Glob. Planet. Chang. 2006, 50, 212–225. [Google Scholar] [CrossRef]
- Kong, D.; Miao, C.; Wu, J.; Duan, Q. Impact assessment of climate change and human activities on net runoff in the Yellow River Basin from 1951 to 2012. Ecol. Eng. 2016, 91, 566–573. [Google Scholar] [CrossRef]
- Meng, F.; Su, F.; Yang, D.; Tong, K.; Hao, Z. Impacts of recent climate change on the hydrology in the source region of the Yellow River basin. J. Hydrol. Reg. Stud. 2016, 6, 66–81. [Google Scholar] [CrossRef]
- Li, C.H.; Yang, Z.F.; Huang, G.H.; Li, Y.P. Identification of relationship between sunspots and natural runoff in the Yellow River based on discrete wavelet analysis. Expert Syst. Appl. 2009, 36, 3309–3318. [Google Scholar] [CrossRef]
- Zhu, Y.; Lin, Z.; Wang, J.; Zhao, Y.; He, F. Impacts of Climate Changes on Water Resources in Yellow River Basin, China. Procedia Eng. 2016, 154, 687–695. [Google Scholar] [CrossRef]
- Wei, Y.; Jiao, J.; Zhao, G.; Zhao, H.; He, Z.; Mu, X. Spatial–temporal variation and periodic change in streamflow and suspended sediment discharge along the mainstream of the Yellow River during 1950–2013. Catena 2016, 140, 105–115. [Google Scholar] [CrossRef]
- Zhao, G.; Mu, X.; Strehmel, A.; Tian, P. Temporal variation of streamflow, sediment load and their relationship in the Yellow River basin, China. PLoS ONE 2014, 9, e91408. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.M.; Zhang, X.C. Causal analysis on actual water flow reduction in the mainstream of the Yellow River. Acta Geogr. Sin. 2004, 59, 323–330. [Google Scholar]
- Zheng, H.X.; Zhang, L.; Zhu, R.R.; Liu, C.M.; Sato, Y.; Fukushima, Y. Responses of streamflow to climate and land surface change in the headwaters of the Yellow River Basin. Water Resour. Res. 2009, 45, W00A19. [Google Scholar] [CrossRef]
- Shi, C.; Zhou, Y.; Fan, X.; Shao, W. A study on the annual runoff change and its relationship with water and soil conservation practices and climate change in the middle Yellow River basin. Catena 2013, 100, 31–41. [Google Scholar] [CrossRef]
- Wang, S.; Yan, M.; Yan, Y.; Shi, C.; He, L. Contributions of climate change and human activities to the changes in runoff increment in different sections of the Yellow River. Quat. Int. 2012, 282, 66–77. [Google Scholar] [CrossRef]
- Gao, P.; Mu, X.M.; Wang, F.; Li, R. Changes in streamflow and sediment discharge and the response to human activities in the middle reaches of the Yellow River. Hydrol. Earth Syst. Sci. 2011, 15, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Xu, C.-Y.; Yang, T. Variability of Water Resource in the Yellow River Basin of Past 50 Years, China. Water Resour. Manag. 2008, 23, 1157–1170. [Google Scholar] [CrossRef]
- Miao, C.; Ni, J.; Borthwick, A.G.L. Recent changes of water discharge and sediment load in the Yellow River basin, China. Prog. Phys. Geogr. 2010, 34, 541–561. [Google Scholar] [CrossRef] [Green Version]
- Xu, J. The water fluxes of the Yellow River to the sea in the past 50 years, in response to climate change and human activities. Environ. Manag. 2005, 35, 620–631. [Google Scholar] [CrossRef]
- Wang, S.; Fu, B.; Liang, W.; Liu, Y.; Wang, Y. Driving forces of changes in the water and sediment relationship in the Yellow River. Sci. Total Environ. 2017, 576, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Shi, C.; Shao, W.; Zhou, Y. The suspended sediment dynamics in the Inner-Mongolia reaches of the upper Yellow River. Catena 2013, 109, 72–82. [Google Scholar] [CrossRef]
- Peng, J.; Chen, S.; Dong, P. Temporal variation of sediment load in the Yellow River basin, China, and its impacts on the lower reaches and the river delta. Catena 2010, 83, 135–147. [Google Scholar] [CrossRef]
- Sang, Y.-F.; Wang, D. New Method for Estimating Periods in Hydrologic Series Data. In Proceedings of the 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery, Shandong, China, 18–20 October 2008; pp. 645–649. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Cavadias, G. Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J. Hydrol. 2002, 259, 254–271. [Google Scholar] [CrossRef]
- Ishak, E.H.; Rahman, A.; Westra, S.; Sharma, A.; Kuczera, G. Evaluating the non-stationarity of Australian annual maximum flood. J. Hydrol. 2013, 494, 134–145. [Google Scholar] [CrossRef]
- Önöz, B.; Bayazit, M. Block bootstrap for Mann-Kendall trend test of serially dependent data. Hydrol. Process. 2012, 26, 3552–3560. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C. The mann-kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour. Manag. 2004, 18, 201–218. [Google Scholar] [CrossRef]
- Kahya, E.; Kalaycı, S. Trend analysis of streamflow in Turkey. J. Hydrol. 2004, 289, 128–144. [Google Scholar] [CrossRef]
- Sang, Y.-F.; Wang, D.; Wu, J.-C.; Zhu, Q.-P.; Wang, L. The relation between periods’ identification and noises in hydrologic series data. J. Hydrol. 2009, 368, 165–177. [Google Scholar] [CrossRef]
- Padmanabhan, G. Maximum entropy spectral analysis of hydrologic data. Water Resour. Res. 1988, 24, 1519–1533. [Google Scholar] [CrossRef]
- Sang, Y.-F.; Wang, Z.; Liu, C. Period identification in hydrologic time series using empirical mode decomposition and maximum entropy spectral analysis. J. Hydrol. 2012, 424–425, 154–164. [Google Scholar] [CrossRef]
- He, B.; Miao, C.; Shi, W. Trend, abrupt change, and periodicity of streamflow in the mainstream of Yellow River. Environ. Monit. Assess. 2013, 185, 6187–6199. [Google Scholar] [CrossRef] [PubMed]
- Sonali, P.; Nagesh Kumar, D. Review of trend detection methods and their application to detect temperature changes in India. J. Hydrol. 2013, 476, 212–227. [Google Scholar] [CrossRef]
- Sharma, C.S.; Panda, S.N.; Pradhan, R.P.; Singh, A.; Kawamura, A. Precipitation and temperature changes in eastern India by multiple trend detection methods. Atmos. Res. 2016, 180, 211–225. [Google Scholar] [CrossRef]
- Onyutha, C.; Tabari, H.; Taye, M.T.; Nyandwaro, G.N.; Willems, P. Analyses of rainfall trends in the Nile River Basin. J. Hydro-Environ. Res. 2016, 13, 36–51. [Google Scholar] [CrossRef]
- Pandey, B.K.; Khare, D. Identification of trend in long term precipitation and reference evapotranspiration over Narmada river basin (India). Glob. Planet. Chang. 2018, 161, 172–182. [Google Scholar] [CrossRef]
- Ran, D.; Yao, W.; Jiao, P. Identification and comprehensive diagnosis of sharp change of annual runoff volume and silt discharge series at Toudaoguai Hydrometric station in the upper reaches of the Yellow River. Arid Zone Res. 2014, 31, 928–936. [Google Scholar]
- Gauthier, T. Detecting Trends Using Spearman’s Rank Correlation Coefficient. Environ. Forensics 2001, 2, 359–362. [Google Scholar] [CrossRef]
- Shadmani, M.; Marofi, S.; Roknian, M. Trend Analysis in Reference Evapotranspiration Using Mann-Kendall and Spearman’s Rho Tests in Arid Regions of Iran. Water Resour. Manag. 2011, 26, 211–224. [Google Scholar] [CrossRef] [Green Version]
- Carrie Morrill, J.T.O.; Julia, E.C. A synthesis of abrupt changes in the Asian summer monsoon since the last deglaciation. Holocene 2003, 13, 465–476. [Google Scholar] [CrossRef]
- Zhao, F.; Xu, Z.; Huang, J. Long-term trend and abrupt change for major climate variables in the upper Yellow River Basin. Acta Meteorol. Sin. 2007, 21, 204–214. [Google Scholar]
- Zhao, F.F.; Xu, Z.X.; Huang, J.X.; Li, J.Y. Monotonic trend and abrupt changes for major climate variables in the headwater catchment of the Yellow River basin. Hydrol. Process. 2008, 22, 4587–4599. [Google Scholar] [CrossRef]
- Wu, X.; Li, H.; Sun, Z.; Dong, Y. Analysis and Diagnosis of changes in Annual Runoff in Kuye River Valley in North Shanxi. J. Ecol. Rural Environ. 2016, 32, 558–562. [Google Scholar]
- Meddi, H. Annual Variability of Precipitation of the North West of Algeria. APCBEE Procedia 2013, 5, 373–377. [Google Scholar] [CrossRef]
- Servat, E.; Paturel, J.E.; Lubès, H.; Kouamé, B.; Ouedraogo, M.; Massonc, J.M. Climatic variability in humid Africa along the Gulf of Guinea Part I dtailed analysis of the phenomenon in cote dIvoire. J. Hydrol. 1997, 191, 1–15. [Google Scholar] [CrossRef]
- Hao, Z.; Zheng, J.; Ge, Q. Precipitation cycles in the Middle and Lower Yellow River. Acta Meteorol. Sin. 2007, 62, 537–544. [Google Scholar]
- Liu, Q.; Yang, Z.; Cui, B. Spatial and temporal variability of annual precipitation during 1961–2006 in Yellow River Basin, China. J. Hydrol. 2008, 361, 330–338. [Google Scholar] [CrossRef]
- Tian, Q.; Prange, M.; Merkel, U. Precipitation and temperature changes in the major Chinese river basins during 1957–2013 and links to sea surface temperature. J. Hydrol. 2016, 536, 208–221. [Google Scholar] [CrossRef]
- Sun, W.; Cheng, B.; Li, R. Climate Variations in the Source Region of the Yellow River. Acta Meteorol. Sin. 2009, 64, 117–127. [Google Scholar]
- Zhang, X.P.; Zhang, L.; McVicar, T.R.; Van Niel, T.G.; Li, L.T.; Li, R.; Yang, Q.; Wei, L. Modelling the impact of afforestation on average annual streamflow in the Loess Plateau, China. Hydrol. Process. 2008, 22, 1996–2004. [Google Scholar] [CrossRef]
- Wang, D.; Hagen, S.C.; Alizad, K. Climate change impact and uncertainty analysis of extreme rainfall events in the Apalachicola River basin, Florida. J. Hydrol. 2013, 480, 125–135. [Google Scholar] [CrossRef]
- Zhao, G.; Tian, P.; Mu, X.; Jiao, J.; Wang, F.; Gao, P. Quantifying the impact of climate variability and human activities on streamflow in the middle reaches of the Yellow River basin, China. J. Hydrol. 2014, 519, 387–398. [Google Scholar] [CrossRef]
- Yao, W.; Hou, S.; Ding, Y. Effects on flow and sediment in the upper Yellow River by operation of Longyangxia Reservoirs and Liujiaxia Reservoir. Adv. Water Sci. 2017, 28, 1–13. [Google Scholar]
- Zhao, Y.; Mu, X.; He, Y.; Xiao, C. Relationship between runoff and sediment discharge in the main channel of Yellow River from 1959 to 2011. J. Sediment Res. 2014, 31–37. [Google Scholar] [CrossRef]
- Hanson, R.T.; Newhouse, M.W.; Dettinger, M.D. A methodology to assess relations between climatic variability and variations in hydrologic time series in the southwestern United States. J. Hydrol. 2004, 287, 252–269. [Google Scholar] [CrossRef]
Station Names | Area (km2) | Longitude | Latitude | Series Length | Time Interval |
---|---|---|---|---|---|
Tangnaihai | 121,972 | 100°09′ | 35°30′ | 1956–1987 | Daily |
1986–2016 | Yearly | ||||
Lanzhou | 222,551 | 103°49′ | 36°04′ | 1956–1987 | Daily |
1986–2016 | Yearly | ||||
Xiaheyan | 254,142 | 105°03′ | 37°27′ | 1956–1988 | Daily |
1986–2016 | Yearly | ||||
Shizuishan | 309,146 | 106°47′ | 39°15′ | 1956–1988 | Daily |
1986–2016 | Yearly | ||||
Toudaoguai | 367,898 | 110°02′ | 40°27′ | 1956–2006 | Daily |
1998–2016 | Yearly | ||||
Longmen | 497,552 | 110°35′ | 35°40′ | 1956–2005 | Daily |
1998–2016 | Yearly | ||||
Tongguan | 682,144 | 110°18′ | 34°36′ | 1956–2005 | Daily |
1998–2016 | Yearly | ||||
Huayuankou | 730,000 | 113°39′ | 34°55′ | 1956–2012 | Daily |
1998–2016 | Yearly | ||||
Gaocun | 734,146 | 115°05′ | 35°23′ | 1956–2009 | Daily |
1998–2016 | Yearly | ||||
Lijin | 751,900 | 118°18′ | 37°31′ | 1950–2014 | Daily |
1998–2016 | Yearly |
Station Name | Trend | Abrupt Change Point | |||
---|---|---|---|---|---|
Tangnaihai | −1.64 | −0.99 | −1.05 | Decreasing | 1989 |
Lanzhou | −2.49 | −1.82 | −1.89 | Decreasing | 1985 |
Xiaheyan | −2.89 | −2.36 | −2.6 | Decreasing | 1985 |
Shizuishan | −3.64 | −3.21 | −3.6 | Decreasing | 1985 |
Toudaoguai | −3.99 | −3.63 | −3.99 | Decreasing | 1985 |
Longmen | −5.75 | −5.06 | −6.53 | Decreasing | 1985 |
Tongguan | −6.65 | −5.59 | −7.72 | Decreasing | 1985 |
Huayuankou | −5.96 | −5.26 | −6.52 | Decreasing | 1985 |
Gaocun | −5.98 | −5.25 | −6.49 | Decreasing | 1985 |
Lijin | −6.84 | −5.79 | −7.45 | Decreasing | 1985 |
Station Name | Average of Different Flow Series (108 m3) | CV of Different Flow Series | ||||
---|---|---|---|---|---|---|
1956–2016 | 1956–1984 | 1986–2016 | 1956–2016 | 1956–1984 | 1986–2016 | |
Tangnaihai * | 199.02 | 210.16 | 181.09 | 0.26 | 0.24 | 0.24 |
Lanzhou | 305.32 | 335.22 | 274.98 | 0.22 | 0.22 | 0.16 |
Xiaheyan | 291.05 | 326.24 | 255.64 | 0.24 | 0.23 | 0.19 |
Shizuishan | 266.54 | 306.20 | 226.40 | 0.28 | 0.25 | 0.21 |
Toudaoguai | 205.31 | 247.79 | 162.57 | 0.36 | 0.30 | 0.27 |
Longmen | 249.50 | 307.24 | 192.37 | 0.35 | 0.27 | 0.24 |
Tongguan | 324.38 | 407.51 | 242.60 | 0.37 | 0.27 | 0.24 |
Huayuankou | 354.98 | 450.28 | 260.99 | 0.41 | 0.32 | 0.25 |
Gaocun | 331.02 | 431.02 | 232.81 | 0.46 | 0.35 | 0.29 |
Lijin | 275.05 | 401.55 | 152.91 | 0.66 | 0.44 | 0.45 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Engel, B.; Yuan, X.; Yuan, P. Variation Analysis of Streamflows from 1956 to 2016 Along the Yellow River, China. Water 2018, 10, 1231. https://doi.org/10.3390/w10091231
Wang X, Engel B, Yuan X, Yuan P. Variation Analysis of Streamflows from 1956 to 2016 Along the Yellow River, China. Water. 2018; 10(9):1231. https://doi.org/10.3390/w10091231
Chicago/Turabian StyleWang, Xiujie, Bernard Engel, Ximin Yuan, and Peixian Yuan. 2018. "Variation Analysis of Streamflows from 1956 to 2016 Along the Yellow River, China" Water 10, no. 9: 1231. https://doi.org/10.3390/w10091231
APA StyleWang, X., Engel, B., Yuan, X., & Yuan, P. (2018). Variation Analysis of Streamflows from 1956 to 2016 Along the Yellow River, China. Water, 10(9), 1231. https://doi.org/10.3390/w10091231