Intensity and Persistence of Soil Water Repellency in Pine Forest Soil in a Temperate Continental Climate under Drought Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Characteristic and Soil Sampling
2.2. Soil Properties
2.3. Meteorological Conditions
2.4. Assessment of SWR
2.5. Statistical Analysis
3. Results
3.1. Soil Chemical Properties
3.2. Persistence of Potential SWR
3.3. Year-to-Year Differences in Soil Water Repellency
3.4. SWR in Relation to the Age of the Scots Pine Forest
3.5. Relation SWR to Soil Chemical Properties
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Breshears, D.D.; Cobb, N.S.; Rich, P.M.; Price, K.P.; Allen, C.D.; Balice, R.G.; Romme, W.H.; Kastens, J.H.; Floyd, M.L.; Belnap, J.; et al. Regional Vegetation Die-Off in Response to Global-Change-Type Drought. Proc. Natl. Acad. Sci. USA 2005, 102, 15144–15148. [Google Scholar] [CrossRef] [PubMed]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.(T.); et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Grossiord, C.; Granier, A.; Ratcliffe, S.; Bouriaud, O.; Bruelheide, H.; Chećko, E.; Forrester, D.I.; Dawud, S.M.; Finér, L.; Pollastrini, M.; et al. Tree diversity does not always improve resistance of forest ecosystems to drought. Proc. Natl. Acad. Sci. USA 2014, 111, 14812–14815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindner, M.; Fitzgerald, J.B.; Zimmermann, N.E.; Reyer, C.; Delzon, S.; van der Maaten, E.; Schelhaas, M.J.; Lasch, P.; Eggers, J.; van der Maaten-Theunissen, M.; et al. Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management? J. Environ. Manag. 2014, 146, 69–83. [Google Scholar] [CrossRef] [PubMed]
- Neary, D.G.; Ice, G.G.; Jackson, C.R. Linkages between forest soils and water quality and quantity. For. Ecol. Manag. 2009, 258, 2269–2281. [Google Scholar] [CrossRef]
- Goebel, M.O.; Bachmann, J.; Reichstein, M.; Janssens, I.A.; Guggenberger, G. Soil water repellency and its implications for organic matter decomposition—is there a link to extreme climatic events? Glob. Chang. Biol. 2011, 17, 2640–2656. [Google Scholar] [CrossRef]
- Doerr, S.H.; Shakesby, R.A.; Walsh, R. Soil water repellency: Its causes, characteristics and hydro-geomorphological significance. Earth-Sci. Rev. 2000, 51, 33–65. [Google Scholar] [CrossRef]
- Burcar, S.; Miller, W.W.; Johnson, D.W.; Tyler, S.W. Seasonal preferential flow in two Sierra Nevada soils under forested and meadow cover. Soil Sci. Soc. Am. J. 1994, 58, 1555–1561. [Google Scholar] [CrossRef]
- Sevink, J.; Imeson, A.C.; Verstraten, J.M. Humus form development and hillslope runoff, and the effects of fire and management, under Mediterranean forest in NE-Spain. Catena 1989, 16, 461–475. [Google Scholar] [CrossRef]
- Wang, C.; Shang, S.; Jia, D.; Han, Y.; Sauvage, S.; Sánchez-Pérez, J.-M.; Kuramochi, K.; Hatano, R. Integrated Effects of Land Use and Topography on Streamflow Response to Precipitation in an Agriculture-Forest Dominated Northern Watershed. Water 2018, 10, 633. [Google Scholar] [CrossRef]
- Bauters, T.W.J.; Steenhuis, T.S.; DiCarlo, D.A.; Nieber, J.L.; Dekker, L.W.; Ritsema, C.J.; Parlangea, J.-Y.; Haverkamp, R. Physics of water repellent soils. J. Hydrol. 2000, 231, 233–243. [Google Scholar] [CrossRef] [Green Version]
- Dekker, L. W.; Ritsema C., J. How water moves in a water repellent sandy soil: 1. Potential and actual water repellency. Water Resour. Res. 1994, 30, 2507–2517. [Google Scholar] [CrossRef]
- Urbanek, E.; Doerr, S.H. CO2 efflux from soils with seasonal water repellency. Biogeosciences 2017, 14, 4781. [Google Scholar] [CrossRef]
- Hewelke, E.; Szatyłowicz, J.; Hewelke, P.; Gnatowski, T.; Aghalarov, R. The Impact of Diesel Oil Pollution on the Hydrophobicity and CO2 Efflux of Forest Soils. Water Air Soil Pollut. 2018, 229, 51. [Google Scholar] [CrossRef] [PubMed]
- Mataix-Solera, J.; Arcenegui, V.; Guerrero, C.; Mayoral, A.M.; Morales, J.; González, J.; García-Orenes, F.; Gómez, I. Water repellency under different plant species in a calcareous forest soil in a semiarid Mediterranean environment. Hydrol. Process. 2007, 21, 2300–2309. [Google Scholar] [CrossRef]
- Zavala, L.M.; González, F.A.; Jordán, A. Intensity and persistence of water repellency in relation to vegetation types and soil parameters in Mediterranean SW Spain. Geoderma 2009, 152, 361–374. [Google Scholar] [CrossRef]
- Cerdà, A.; Borja, M.E.L.; Úbeda, X.; Martínez-Murillo, J.F.; Keesstra, S. Pinus halepensis M. versus Quercus ilex subsp. Rotundifolia L. runoff and soil erosion at pedon scale under natural rainfall in Eastern Spain three decades after a forest fire. For. Ecol. Manag. 2017, 400, 447–456. [Google Scholar] [CrossRef]
- Gazol, A.; Camarero, J.J.; Jiménez, J.J.; Moret-Fernández, D.; López, M.V.; Sangüesa-Barreda, G.; Igual, J.M. Beneath the canopy: Linking drought-induced forest die off and changes in soil properties. For. Ecol. Manag. 2018, 422, 294–302. [Google Scholar] [CrossRef]
- Szatylowicz, J.; Gnatowski, T.; Szejba, D.; Oleszczuk, R.; Brandyk, T.; Kechavarzi, C. Moisture content variability in drained fen soil. In Wetlands Modeling, Monitoring and Management; Okruszko, T., Maltby, E., Szatyłowicz, J., Świątek, D., Kotowski, W., Eds.; Taylor & Francis Group: London, UK, 2007; pp. 113–120. ISBN 978-0-415-4082. [Google Scholar]
- Lachacz, A.; Nitkiewicz, M.; Kalisz, B. Water repellency of post-boggy soils with a various content of organic matter. Biologia 2009, 64, 634–638. [Google Scholar] [CrossRef] [Green Version]
- Kalisz, B.; Lachacz, A.; Glazewski, R. Effects of peat drainage on labile organic carbon and water repellency in NE Poland. Turk. J. Agric. For. 2015, 39, 20–27. [Google Scholar] [CrossRef]
- Hewelke, E.; Szatyłowicz, J.; Gnatowski, T.; Oleszczuk, R. Spatial Variability in Soil Moisture Content under Preferential Flow in Hydrophobic Organic Soil. Rocz. Ochr. Środowiska 2014, 16, 580–607. [Google Scholar]
- Hewelke, E.; Szatyłowicz, J.; Gnatowski, T.; Oleszczuk, R. Effects of soil water repellency on moisture patterns in a degraded sapric histosol. Land Degrad. Dev. 2016, 27, 955–964. [Google Scholar] [CrossRef]
- Glina, B.; Bogacz, A.; Gulyás, M.; Zawieja, B.; Gajewski, P.; Kaczmarek, Z. The effect of long-term forestry drainage on the current state of peatland soils: A case study from the Central Sudetes (SW Poland). Mires Peat 2016, 18, 1–11. [Google Scholar]
- Buczko, U.; Bens, O.; Fischer, H.; Hüttl, R.F. Water repellency in sandy luvisols under different forest transformation stages in northeast Germany. Geoderma 2002, 109, 1–18. [Google Scholar] [CrossRef]
- Buczko, U.; Bens, O.; Hüttl, R.F. Variability of soil water repellency in sandy forest soils with different stand structure under Scots pine (Pinus sylvestris) and beech (Fagus sylvatica). Geoderma 2005, 126, 317–336. [Google Scholar] [CrossRef]
- Doerr, S.H.; Shakesby, R.A.; Dekker, L.W.; Ritsema, C.J. Occurrence, prediction and hydrological effects of water repellency amongst major soil and land-use types in a humid temperate climate. Eur. J. Soil Sci. 2006, 57, 741–754. [Google Scholar] [CrossRef]
- Greiffenhagen, A.; Wessolek, G.; Facklam, M.; Renger, M.; Stoffregen, H. Hydraulic functions and water repellency of forest floor horizons on sandy soils. Geoderma 2006, 132, 182–195. [Google Scholar] [CrossRef]
- Orfánus, T.; Dlapa, P.; Fodor, N.; Rajkai, K.; Sándor, R.; Nováková, K. How severe and subcritical water repellency determines the seasonal infiltration in natural and cultivated sandy soils. Soil Tillage Res. 2014, 135, 49–59. [Google Scholar] [CrossRef]
- Lichner, L.; Capuliak, J.; Zhukova, N.; Holko, L.; Czachor, H.; Kollár, J. Pines influence hydrophysical parameters and water flow in a sandy soil. Biologia 2013, 68, 1104–1108. [Google Scholar] [CrossRef] [Green Version]
- Buczko, U.; Bens, O.; Hüttl, R.F. Changes in soil water repellency in a pine–beech forest transformation chronosequence: Influence of antecedent rainfall and air temperatures. Ecol. Eng. 2007, 31, 154–164. [Google Scholar] [CrossRef]
- Doerr, S.H.; Shakesby, R.A.; MacDonald, L.H. Soil water repellency: A key factor in post-fire erosion. In Fire Effects on Soils and Restoration Strategies; Cerda, A., Peter, R.R., Eds.; CRC Press: Boca Raton, FL, USA, 2009; Volume 5, ISBN 9781578085262. [Google Scholar]
- DeBano, L.F. The role of fire and soil heating on water repellency in wildland environments: A review. J. Hydrol. 2000, 231, 195–206. [Google Scholar] [CrossRef]
- Jordán, A.; Zavala, L.M.; Mataix-Solera, J.; Nava, A.L.; Alanís, N. Effect of fire severity on water repellency and aggregate stability on Mexican volcanic soils. Catena 2011, 84, 136–147. [Google Scholar] [CrossRef]
- Arcenegui, V.; Mataix-Solera, J.; Guerrero, C.; Zornoza, R.; Mataix-Beneyto, J.; García-Orenes, F. Immediate effects of wildfires on water repellency and aggregate stability in Mediterranean calcareous soils. Catena 2008, 74, 219–226. [Google Scholar] [CrossRef]
- Granged, A.J.; Jordán, A.; Zavala, L.M.; Bárcenas, G. Fire-induced changes in soil water repellency increased fingered flow and runoff rates following the 2004 Huelva wildfire. Hydrol. Process. 2011, 25, 1614–1629. [Google Scholar] [CrossRef]
- Zavala, L.M.; González, F.A.; Jordán, A. Fire-induced soil water repellency under different vegetation types along the Atlantic dune coast-line in SW Spain. Catena 2009, 79, 153–162. [Google Scholar] [CrossRef]
- Mataix-Solera, J.; Arcenegui, V.; Tessler, N.; Zornoza, R.; Wittenberg, L.; Martínez, C.; Caselles, P.; Pérez-Bejarano, A.; Malkinson, D.; Jordán, M.M. Soil properties as key factors controlling water repellency in fire-affected areas: Evidences from burned sites in Spain and Israel. Catena 2013, 108, 6–13. [Google Scholar] [CrossRef]
- MacDonald, L.H.; Huffman, E.L. Post-fire soil water repellency. Soil Sci. Soc. Am. J. 2004, 68, 1729–1734. [Google Scholar] [CrossRef]
- Malkinson, D.; Wittenberg, L. Post fire induced soil water repellency—Modeling short and long-term processes. Geomorphology 2011, 125, 186–192. [Google Scholar] [CrossRef]
- Bodí, M.B.; Muñoz-Santa, I.; Armero, C.; Doerr, S.H.; Mataix-Solera, J.; Cerdà, A. Spatial and temporal variations of water repellency and probability of its occurrence in calcareous Mediterranean rangeland soils affected by fires. Catena 2013, 108, 14–25. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S. Fire in the Earth system. Science 2009, 324, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.P.; Scott, J.; Langowski, P.G.; Gilbertson-Day, J.W.; Haas, J.R.; Bowne, E.M. Assessing Watershed-Wildfire Risks on National Forest System Lands in the Rocky Mountain Region of the United States. Water 2013, 5, 945–971. [Google Scholar] [CrossRef] [Green Version]
- Pausas, J.G. Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean basin). Clim. Chang. 2004, 63, 337–350. [Google Scholar] [CrossRef]
- Stojanovic, M.; Drumond, A.; Nieto, R.; Gimeno, L. Anomalies in Moisture Supply during the 2003 Drought Event in Europe: A Lagrangian Analysis. Water 2018, 10, 467. [Google Scholar] [CrossRef]
- Boczoń, A.; Kowalska, A.; Dudzińska, M.; Wróbel, M. Drought in Polish Forests in 2015. Pol. J. Environ. Stud. 2016, 25, 1857–1862. [Google Scholar] [CrossRef] [Green Version]
- Hewelke, P.; Gnatowski, T.; Hewelke, E.; Tyszka, J.; Zakowicz, S. Analysis of Water Retention Capacity for Select Forest Soils in Poland. Pol. J. Environ. Stud. 2015, 24, 1013–1019. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Forest Fires in Europe, Middle East and North Africa 2015; Joint Research Centre: Ispra, Italy, 2016; p. 117. ISBN 978-92-79-62958-7. [Google Scholar]
- Niklasson, M.; Zin, E.; Zielonka, T.; Feijen, M.; Korczyk, A.F.; Churski, M.; Samojlik, T.; Jędrzejewska, B.; Gutowski, J.M.; Brzeziecki, B. A 350-year tree-ring fire record from Białowieża Primeval Forest, Poland: Implications for Central European lowland fire history. J. Ecol. 2010, 98, 1319–1329. [Google Scholar] [CrossRef]
- Krogulec, E.; Zabłocki, S. Relationship between the environmental and hydrogeological elements characterizing groundwater-dependent ecosystems in central Poland. Hydrogeol. J. 2015, 23, 1587–1602. [Google Scholar] [CrossRef] [Green Version]
- Krogulec, E. Evaluating the risk of groundwater drought in groundwater-dependent ecosystems in the central part of the Vistula River Valley, Poland. Ecohydrol. Hydrobiol. 2018, 18, 82–91. [Google Scholar] [CrossRef]
- Ryżak, M.; Bartminski, P.; Bieganowski, A. Methods for determination of particle size distribution of mineral soils [in Polish]. Acta Agrophys. 2009, 175, 1–84. [Google Scholar]
- Soil Survey Division Staff. Soil Survey Manual; United States Department of Agriculture: Washington, DC, USA, 1993; p. 315.
- Food and Agriculture Organizaiton of the United Nations (FAO); International Union of Soil Sciences (IUSS). World Reference Base for Soil Resources 2014, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; Food and Agriculture Organizaiton of the United Nations (FAO): Rome, Italy, 2015; p. 192. ISBN 978-92-5-108369-7. [Google Scholar]
- Olszewski, A.; Wierzbicki, A.; Lenartowicz, M. Report from the Realization of a Research-Measurement Programme—Integrated Monitoring of the Natural Environment at the Kampinos Base Station in 2016; Kampinoski Park Narodowy: Granica, Poland, 2017; p. 188. (In Polish)
- Rodríguez-Alleres, M.; Benito, E. Temporal fluctuations of water repellency in forest soils of Galicia, NW Spain. Do soil samples dried at laboratory reflect the potential soil water repellency? Hydrol. Process. 2012, 26, 1179–1187. [Google Scholar] [CrossRef]
- Papierowska, E.; Matysiak, W.; Szatyłowicz, J.; Debaene, G.; Urbanek, E.; Kalisz, B.; Łachacz, A. Compatibility of methods used for soil water repellency determination for organic and organo-mineral soils. Geoderma 2018, 314, 221–231. [Google Scholar] [CrossRef]
- Dekker, L.W.; Jungerius, P.D. Water repellency in the dunes with special reference to The Netherlands. Catena Suppl. 1990, 18, 173–183. [Google Scholar]
- González-Pérez, J.A.; González-Vila, F.J.; Almendros, G.; Knicker, H. The effect of fire on soil organic matter—A review. Environ. Int. 2004, 30, 855–870. [Google Scholar] [CrossRef] [PubMed]
- Badía, D.; López-García, S.; Martí, C.; Ortíz-Perpiñá, O.; Girona-García, A.; Casanova-Gascón, J. Burn effects on soil properties associated to heat transfer under contrasting moisture content. Sci. Total. Environ. 2017, 601, 1119–1128. [Google Scholar] [CrossRef] [PubMed]
- Molla, I.; Velizarova, E.; Malcheva, B.; Bogoev, V.; Hadzhieva, Y. Forest Fire Impact on the Soil Carbon Content and Stock on the North Slopes of Rila Mountain (Bulgaria). Ecol. Balck 2014, 2014. 5, 81–88. [Google Scholar]
- Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Alleres, M.; Varela, M.E.; Benito, E. Natural severity of water repellency in pine forest soils from NW Spain and influence of wildfire severity on its persistence. Geoderma 2012, 191, 125–131. [Google Scholar] [CrossRef]
- Santos, J.M.; Verheijen, F.G.A.; Wahren, F.T.; Wahren, A.; Feger, K.H.; Jannin, L.B.; Rial-Rivas, M.E.; Keizer, J.J.; Nunes, J.P. Soil water repellency dynamics in pine and eucalypt plantations in Portugal a high-resolution time series. Land Degrad. Dev. 2013, 27, 1334–1343. [Google Scholar] [CrossRef]
- Gabarrón-Galeote, M.A.; Martínez-Murillo, J.F.; Quesada, M.A.; Ruiz-Sinoga, J.D. Seasonal changes in the soil hydrological and erosive response depending on aspect, vegetation type and soil water repellency in different Mediterranean microenvironments. Solid Earth 2013, 4, 497. [Google Scholar] [CrossRef]
- Täumer, K.; Stoffregen, H.; Wessolek, G. Determination of repellency distribution using soil organic matter and water content. Geoderma 2005, 125, 107–115. [Google Scholar] [CrossRef]
- Neary, D.G.; Klopatek, C.C.; DeBanoc, L.F.; Ffolliott, P.F. Fire effects on belowground sustainability: A review and synthesis. For. Ecol. Manag. 1999, 122, 51–71. [Google Scholar] [CrossRef]
- Vogelmann, E.S.; Reichert, J.M.; Prevedello, J.; Consensa, C.O.B.; Oliveira, A.É.; Awe, G.O.; Mataix-Solera, J. Threshold water content beyond which hydrophobic soils become hydrophilic: The role of soil texture and organic matter content. Geoderma 2013, 209, 177–187. [Google Scholar] [CrossRef]
- Huffman, E.L.; MacDonald, L.H.; Stednick, J.D. Strength and persistence of fire-induced soil hydrophobicity under ponderosa and lodgepole pine, Colorado Front Range. Hydrol. Process. 2001, 15, 2877–2892. [Google Scholar] [CrossRef]
- Ganz, C.; Bachmann, J.; Lamparter, A.; Woche, S.K.; Duijnisveld, W.H.; Göbel, M.O. Specific processes during in situ infiltration into a sandy soil with low-level water repellency. J. Hydrol. 2013, 484, 45–54. [Google Scholar] [CrossRef]
- Mataix-Solera, J.; Doerr, S.H. Hydrophobicity and aggregate stability in calcareous topsoils from fire-affected pine forest in southeastern Spain. Geoderma 2004, 118, 77–88. [Google Scholar] [CrossRef]
- Doerr, S.H.; Shakesby, R.A.; Walsh, R. Soil hydrophobicity variations with depth and particle size fraction in burned and unburned Eucalyptus globulus and Pinus pinaster forest terrain in the Agueda Basin, Portugal. Catena 1996, 27, 25–47. [Google Scholar] [CrossRef]
- Rodríguez-Alleres, M.; Benito, E.; de Blas, E. Extent and persistence of water repellency in north-western Spanish soils. Hydrol. Process. 2007, 21, 2291–2299. [Google Scholar] [CrossRef]
- Butzen, V.; Seeger, M.; Marruedo, A.; de Jonge, L.; Wengel, R.; Ries, J.B.; Casper, M.C. Water repellency under coniferous and deciduous forest—Experimental assessment and impact on overland flow. Catena 2015, 133, 255–265. [Google Scholar] [CrossRef]
- Cerdà, A.; Doerr, S.H. Soil wettability, runoff and erodibility of major dry-Mediterranean land use types on calcareous soils. Hydrol. Process. 2007, 21, 2325–2336. [Google Scholar] [CrossRef]
- Pereira, P.; Úbeda, X.; Martin, D.; Mataix-Solera, J.; Cerdà, A.; Burguet, M. Wildfire effects on extractable elements in ash from a Pinus pinaster forest in Portugal. Hydrol. Process. 2014, 28, 3681–3690. [Google Scholar] [CrossRef]
- Wallis, M.G.; Horne, D.J. Soil water repellency. In Advances in Soil Science; Stewart, B.A., Ed.; Springer: New York, NY, USA, 1992; pp. 91–146. ISBN 978-1-4612-3144-8. [Google Scholar]
- Alanís, N.; Hernández-Madrigal, V.M.; Cerdà, A.; Muñoz-Rojas, M.; Zavala, L.M.; Jordán, A. Spatial gradients of intensity and persistence of soil water repellency under different forest types in central Mexico. Land Degrad. Dev. 2017, 28, 317–327. [Google Scholar] [CrossRef]
- Olejniczak, I.; Gorska, E.B.; Kondras, M.; Oktaba, L.; Gozdowski, D.; Jankiewicz, U.; Prędecka, A.; Dobrzyński, J.; Otręba, A.; Tyburski, Ł.; et al. Fire-a Factor Forming the Numbers of Microorganisms and Mesofauna in Forest Soils. Rocz. Ochr. Środowiska 2017, 19, 511–526. [Google Scholar]
- Zaniewski, P.T.; Otreba, A. Response of vegetation to the surface fire in the pine forest Peucedano-Pinetum W. Mat. (1962) 1973 in the Kampinoski National Park. Sylwan 2017, 161, 991–1001. [Google Scholar]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2013: The Physical Science Basis; IPCC (Intergovernmental Panel on Climate Change): Geneva, Switzerland; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
Sampling Time | Site | Soil Depth (cm) | TOC (%) | N (%) | C/N | pH (H2O) [−] | pH (KCl) [−] |
---|---|---|---|---|---|---|---|
July 2015 | Central Fire | 0–5 | 1.51 (0.54) | 0.068 (0.016) | 23.38 (9.70) | 3.55 (0.26) | 3.39 (0.28) |
5–10 | 1.25 (0.38) | 0.053 (0.017) | 25.07 (10.34) | 3.57 (0.17) | 3.48 (0.25) | ||
10–20 | 0.63 (0.11) | 0.044 (0.022) | 16.49 (5.73) | 3.90 (0.18) | 3.78 (0.28) | ||
Peripheral Fire | 0–5 | 2.28 (0.65) | 0.096 (0.023) | 24.17 (6.28) | 3.44 (0.21) | 3.15 (0.22) | |
5–10 | 1.29 (0.24) | 0.058 (0.057) | 23.6 (6.22) | 3.59 (0.15) | 3.39 (0.22) | ||
10–20 | 0.61 (0.19) | 0.041 (0.014) | 17.20 (7.23) | 3.95 (0.27) | 3.79 (0.28) | ||
Control | 0–5 | 2.24 (0.65) | 0.097 (0.026) | 23.57 (5.21) | 3.29 (0.24) | 3.02 (0.13) | |
5–10 | 1.26 (0.23) | 0.067 (0.019) | 19.69 (4.62) | 3.42 (0.15) | 3.27 (0.22) | ||
10–20 | 0.56 (0.17) | 0.045 (0.017) | 15.08 (7.43) | 3.96 (0.12) | 3.79 (0.17) | ||
July 2016 | Central Fire | 0–5 | 1.85 (0.68) | 0.038 (0.014) | 50.00 (9.37) | 3.21 (0.17) | 3.07 (0.16) |
5–10 | 1.39 (0.52) | 0.029 (0.010) | 49.08 (14.33) | 3.48 (0.17) | 3.25 (0.14) | ||
10–20 | 0.83 (0.22) | 0.019 (0.006) | 43.41 (6.54) | 3.92 (0.15) | 3.70 (0.13) | ||
Peripheral Fire | 0–5 | 2.16 (0.68) | 0.048 (0.014) | 45.17 (6.40) | 3.70 (0.14) | 3.56 (0.14) | |
5–10 | 1.48 (0.37) | 0.034 (0.009) | 43.57 (7.46) | 3.94 (0.15) | 3.76 (0.17) | ||
10–20 | 0.93 (0.26) | 0.022 (0.007) | 45.41 (12.73) | 4.46 (0.30) | 4.22 (0.24) | ||
Control | 0–5 | 2.47 (0.75) | 0.057 (0.021) | 43.87 (5.83) | 3.59 (0.35) | 3.29 (0.25) | |
5–10 | 1.57 (0.47) | 0.037 (0.015) | 44.25 (9.77) | 3.85 (0.36) | 3.47 (0.24) | ||
10–20 | 0.89 (0.26) | 0.023 (0.007) | 40.96 (12.50) | 4.37 (0.30) | 3.90 (0.30) |
Sampling Period | Soil Depth (cm) | pH (KCl) [−] | |
---|---|---|---|
July 2015 | 0–5 | WDPT_med. | 0.393 |
5–10 | WDPT_med. | 0.395 | |
10–20 | WDPT_med. | 0.345 | |
July 2016 | 0–5 | WDPT_med. | 0.358 |
5–10 | WDPT_med. | - | |
10–20 | WDPT_med. | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hewelke, E.; Oktaba, L.; Gozdowski, D.; Kondras, M.; Olejniczak, I.; Górska, E.B. Intensity and Persistence of Soil Water Repellency in Pine Forest Soil in a Temperate Continental Climate under Drought Conditions. Water 2018, 10, 1121. https://doi.org/10.3390/w10091121
Hewelke E, Oktaba L, Gozdowski D, Kondras M, Olejniczak I, Górska EB. Intensity and Persistence of Soil Water Repellency in Pine Forest Soil in a Temperate Continental Climate under Drought Conditions. Water. 2018; 10(9):1121. https://doi.org/10.3390/w10091121
Chicago/Turabian StyleHewelke, Edyta, Lidia Oktaba, Dariusz Gozdowski, Marek Kondras, Izabella Olejniczak, and Ewa Beata Górska. 2018. "Intensity and Persistence of Soil Water Repellency in Pine Forest Soil in a Temperate Continental Climate under Drought Conditions" Water 10, no. 9: 1121. https://doi.org/10.3390/w10091121
APA StyleHewelke, E., Oktaba, L., Gozdowski, D., Kondras, M., Olejniczak, I., & Górska, E. B. (2018). Intensity and Persistence of Soil Water Repellency in Pine Forest Soil in a Temperate Continental Climate under Drought Conditions. Water, 10(9), 1121. https://doi.org/10.3390/w10091121