Application of a Coastal Vulnerability Index. A Case Study along the Apulian Coastline, Italy
Abstract
:1. Introduction
2. Methods and Data
2.1. Methods
- Geomorphology
- Coastal slope
- Shoreline erosion/accretion rates
- Emerged beach width
- Dune width
- Relative sea-level change
- Mean significant wave height
- Mean tide range
- Width of vegetation behind the beach
- Posidonia oceanica
- Geomorphology that expresses the relative erodibility of different landform types (e.g., rocky cliffs, sandy beaches) along the coast and requires information on the spatial distribution of landform types and their stability;
- Coastal slope that is an indicator of the relative vulnerability to inundation and of the potential rapidity of shoreline retreat;
- Shoreline erosion/accretion rates that allows to make assessments on the state of erosion or accretion;
- Emerged beach width is a variable related to the ability to dissipate wave energy; a wider beach has greater ability to dissipate the wave energy and therefore to reduce the impact of extreme events (e.g., storm surges).
- Relative sea level change that is derived from the time series of sea level records at each tide gauge stations along the coast; this variable includes both eustatic sea-level rise as well as regional sea-level rise due to isostatic and tectonic adjustments of the land surface;
- Mean significant wave height represents the potential for storm erosion. It is well known that storm erosion is directly related to the energy contained in storm waves and that the wave height has to be above a certain threshold (which depends on local conditions) to cause beach/dune erosion.
- Mean tide range that is linked to both permanent and episodic inundation hazards.
- Width of vegetation behind the beach that is a variable related to vulnerability to storm events. In fact, the presence of vegetation is useful to dissipate wave energy and to reduce erosion in case of extreme events;
- Posidonia oceanica that is a marine phanerogam endemic to the Mediterranean basin which forms extended meadows along its coasts in a bathymetric surface to 0–40 m depth in clear waters [47]; several studies have shown the influence of these marine phanerogam on the nature and dynamics of coastal sediments [48,49,50,51]. The Posidonia oceanica colonize sandy beaches, [52] rocky substrates [53,54] and is generally absent in the depositional area of fine sediments such as the mouth of coastal rivers [55,56] in relation to the high rate of turbidity which causes a reduction of light penetration [57]. Recent papers [58,59] have confirmed that Posidonia oceanica forms a key coastal habitat, which plays a crucial role in the physical equilibrium of a large portion of the Mediterranean coasts. Therefore, the Posidonia oceanica is considered the resistance/resilience slime of the extreme weather events and SLR.
2.2. Data
- -
- Geomorphology has been derived from the map data (DTM) combined with the lithological map available on the Territorial Information System of Apulia Region, Sit-Apulia [60], for a 0.5 km grid cell;
- -
- Coastal slope (%), has been estimated in accordance with [61]; it has been determined from a topographic and bathymetric grid extending 5 km landward and seaward of the shoreline. Elevation data have been obtained from the digital model available on the Sit-Apulia as gridded topographic and bathymetric elevation at 1 m vertical resolution for 8 m grid cells.
- -
- Shoreline erosion/accretion rates (m/year), have been estimated as average values at the considered transect. The shorelines used were derived from the orthophotos available for years from 1992 to 2012, available on the Sit-Apulia [60];
- -
- Emerged beach width (m), has been measured from the point where evidence of usual wave/tide impact ends to the point where vegetation or infrastructures begin. It has been evaluated considering the regional orthophotos, available on the Sit-Apulia [60];
- -
- -
- Mean significant wave height (m), has been obtained with reference to the data of the Monopoli wave buoy belonging to the National Wave Metric Network (ISPRA—Institute for Environmental Protection and Research);
- -
- Mean tide range (m), has been obtained from the European Environmental Agency- EEA data-base [63];
- -
- Width of vegetation behind the beach (m), has been evaluated by considering the regional orthophotos, available on the Sit-Apulia [60]. The width of vegetation has been determined by clear and obvious signs of flora, indicated by the green area behind the beach; the measure was interrupted in the case of intersection with infrastructures such as roads, houses, etc.
- -
- Posidonia oceanica (Boolean: presence/absence), has been evaluated on the basis of a research study carried out by Apulia Region [64].
3. The Study Area
4. Results
5. Discussion
6. Comparison between Two Index-Base Methods
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- National Oceanic and Atmospheric Administration, NOAA. National Coastal Population Report, Population Trends from 1970 to 2020. 2013. Available online: http://stateofthecoast.noaa.gov/features/coastal-population-report.pdf (accessed on 12 February 2018).
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Summaries, Frequently Asked Questions, and Cross-Chapter Boxes; A Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; World Meteorological Organization: Geneva, Switzerland, 2014; 190p, Available online: http://www.ipcc.ch/report/ar5/wg2/ (accessed on 12 February 2018)(In Arabic, Chinese, English, French, Russian, and Spanish).
- Vousdoukas, M.I.; Mentaschi, L.; Voukouvalas, E.; Verlaan, M.; Jevrejeva, S.; Jackson, L.P.; Feyen, L. Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard. Nat. Commun. 2018, 1–12. [Google Scholar] [CrossRef] [PubMed]
- López Royo, M.; Ranasinghe, R.; Jiménez, J.A. A Rapid, Low-Cost Approach to Coastal Vulnerability Assessment at a National Level. J. Coast. Res. 2016, 32, 932–945. [Google Scholar] [CrossRef]
- United States Army, Corps of Engineers, Coastal Engineering Research Center (USACE). Shore Protection Manual; Department of the Army, Waterways Experiment Station, Corps of Engineers, Coastal Engineering Research Center: Washington, DC, USA, 1984.
- Goda, Y. Random Seas and Design of Maritime Structures, 3rd ed.; Advanced Series on Ocean Engineering; World Scientific: Singapore, 2010. [Google Scholar]
- Van der Meer, J.W. Rock Slopes and Gravel Beaches under Wave Attack. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 1988. [Google Scholar]
- Tomasicchio, G.R.; D’Alessandro, F. Wave energy transmission through and over low crested breakwaters. J. Coast. Res. 2013, 1, 398–403. [Google Scholar] [CrossRef]
- Gallina, V.; Torresan, S.; Critto, A.; Sperotto, A.; Glade, T.; Marcomini, A. A review of multi-risk methodologies for natural hazards: Consequences and challenges for a climate change impact assessment. J. Environ. Manag. 2016, 168, 123–132. [Google Scholar] [CrossRef] [PubMed]
- ETC CCA. Methods for Assessing Coastal Vulnerability to Climate Change Technical Paper 1/2011. Available online: http://cca.eionet.europa.eu/docs/TP_1-2011 (accessed on 12 February 2018).
- Gornitz, V.; White, T.W.; Cushman, R.M. Vulnerability of the East coast, U.S.A. to future sea level rise. J. Coast. Res. 1990, 9, 201–237. [Google Scholar]
- Gornitz, V. Global coastal hazards from future sea level rise. Glob. Planet. Chang. 1991, 89, 379–398. [Google Scholar]
- Thieler, E.R.; Hammar-Klose, E. National Assessment of Coastal Vulnerability to Sea-Level Rise: Preliminary Results for U.S. Atlantic Coast; Open-File Report 99-593; U.S. Geological Survey: Reston, VA, USA, 1999; 1 Sheet. Available online: http://pubs.usgs.gov/of/1999/of99-593/ (accessed on 12 February 2018).
- Thieler, E.R.; Hammer-Klose, E.S. National Assessment of Coastal Vulnerability to Sea-Level Rise: Preliminary Results for the US Pacific Coast; Open File Report 00-178; United States Geological Survey (USGS): Woods Hole, MA, USA, 2000; 1p. Available online: https://www2.usgs.gov/science/cite-view.php?cite=1442 (accessed on 12 February 2018).
- Thieler, E.R.; Williams, S.J.; Beavers, R. Vulnerability of U.S. National Parks to Sea-Level Rise and Coastal Change; U.S. Geological Survey Fact Sheet FS 095-02; U.S. Geological Survey: Reston, VA, USA, 2002; 2p. Available online: http://pubs.usgs.gov/fs/fs095-02/ (accessed on 12 February 2018).
- Pendleton, E.A.; Thieler, E.R.; Williams, S.J. Coastal Vulnerability Assessment of War in the Pacific National Historical Park to Sea-Level Rise. U.S. Geological Survey Open-File Report 2005a-1056. 2005. Available online: https://pubs.usgs.gov/of/2005/1056/ (accessed on 12 February 2018).
- Pendleton, E.A.; Thieler, E.R.; Williams, S.J. Coastal Vulnerability Assessment of National Park of American Samoa to Sea-Level Rise. U.S. Geological Survey Open-File Report 2005b-1055. 2005. Available online: https://pubs.usgs.gov/of/2005/1055/ (accessed on 12 February 2018).
- Pendleton, E.A.; Thieler, E.R.; Williams, S.J. Coastal Vulnerability Assessment of Channel Islands National Park (CHIS) to Sea-Level Rise. U.S. Geological Survey Open-File Report 2005-1057. 2005. Available online: https://pubs.usgs.gov/of/2005/1057/ (accessed on 12 February 2018).
- Abuodha, P.A.; Woodroffe, C.D. Assessing Vulnerability of Coasts to Climate Change: A Review of Approaches and Their Application to the Australian Coast; Australian National Centre for Ocean Resources and Security University of Wollongong: Wollongong, Australia, 2007; 458p, Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.461.2048&rep=rep1&type=pdf (accessed on 12 February 2018).
- Srinivasa Kumar, T.; Mahendra, R.S.; Nayak, S.; Radhakrishnan, K.; Sahu, K.C. Coastal Vulnerability Assessment for Orissa State, East Coast of India. J. Coast. Res. 2010, 26, 523–534. [Google Scholar] [CrossRef]
- Mohd Fauzi, M.; Lee Hin, L.; Mohd Kamarul Huda, S. Coastal Vulnerability Assessment towards Sustainable Management of Peninsular Malaysia Coastline. Int. J. Environ. Sci. Dev. 2014, 5, 533–538. [Google Scholar]
- Loinenak, F.; Hartoko, A.; Muskananfola, M.R. Mapping of coastal vulnerability using the coastal vulnerability index and geographic information system. Int. J. Technol. 2015, 5, 819–827. [Google Scholar] [CrossRef]
- Ozyurt, G. Vulnerability of Coastal Areas to Sea Level Rise: A Case of Study on Göksu Delta. Master’s Thesis, Graduate School of Natural and Applied Sciences of Middle-East Technical University, Ankara, Turkey, 2007. Available online: http://etd.lib.metu.edu.tr/upload/12608146/index.pdf (accessed on 12 February 2018).
- Ozyurt, G.; Ergin, A.; Esen, M. Indicator Based Coastal Vulnerability Assessment Model to Sea Level Rise. In Proceedings of the Seventh International Conference on Coastal and Port Engineering in Developing Countries COPEDEC VII “Best Practices in the Coastal Environment”, Dubai, UAE, 24–28 February 2008; Available online: https://icce-ojs-tamu.tdl.org/icce/index.php/icce/article/view/1905/pdf_144 (accessed on 12 February 2018).
- Palmer, B.J.; Van der Elst, R.; Mackay, F.; Mather, A.A.; Smith, A.M.; Bundy, S.C.; Thackeray, Z.; Leuci, R.; Parak, O. Preliminary coastal vulnerability assessment for KwaZulu-Natal, South Africa. J. Coast. Res. 2011, 64, 1390–1395. [Google Scholar]
- Kantamaneni, K.; Du, X.; Aher, S.; Singh, R.M. Building Blocks: A Quantitative Approach for Evaluating Coastal Vulnerability. Water 2017, 9, 905. [Google Scholar] [CrossRef]
- Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet Chang. 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Marcos, M.; Jorda, G.; Gomis, D.; Perez, B. Changes in storm surges in southern Europe from a regional model under climate change scenarios. Glob. Planet Chang. 2011, 77, 116–128. [Google Scholar] [CrossRef] [Green Version]
- Krestenitis, Y.N.; Androulidakis, Y.S.; Kontos, Y.N.; Georgakopoulos, G. Coastal inundation in the north-eastern Mediterranean coastal zone due to storm surge events. J. Coast. Conserv. 2011, 15, 353–368. [Google Scholar] [CrossRef]
- Jordà, G.; Gomis, D.; Álvarez-Fanjul, E.; Somot, S. Atmospheric contribution to Mediterranean and nearby Atlantic sea level variability under different climate change scenarios. Glob. Planet Chang. 2012, 80–81, 198–214. [Google Scholar] [CrossRef] [Green Version]
- Conte, D.; Lionello, P. Characteristics of large positive and negative surges in the Mediterranean Sea and their attenuation in future climate scenarios. Glob. Planet Chang. 2013, 111, 159–173. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Voukouvalas, E.; Mentaschi, L.; Dottori, F.; Giardino, A.; Bouziotas, D.; Bianchi, A.; Salamon, P.; Feyen, L. Developments in large-scale coastal flood hazard mapping. Nat. Hazards Earth Syst. Sci. 2016, 16, 1841–1853. [Google Scholar] [CrossRef] [Green Version]
- Vousdoukas, M.I.; Voukouvalas, E.; Annunziato, A.; Giardino, A.; Feyen, L. Projections of extreme storm surge levels along Europe. Clim. Dyn. 2016, 47, 3171–3190. [Google Scholar] [CrossRef] [Green Version]
- European Environmental Agency (EEA). Mediterranean Sea Region Briefing—The European Environment—State and Outlook 2015. Available online: https://www.eea.europa.eu/soer-2015/countries/mediterranean (accessed on 12 February 2018).
- Doukakis, E. Coastal vulnerability and risk parameters. Eur. Water 2005, 11/12, 3–7. [Google Scholar]
- Gaki-Papanastassiou, K.; Karymbalis, E.; Serafim, P.; Zouva, C. Coastal vulnerability assessment to sea-level rise based on geomorphological and oceanographical parameters: The case of Argolikos Gulf, Peloponnese, Greece. Hell. J. Geosci. 2010, 45, 109–122. [Google Scholar]
- Karymbalis, E.; Chalkias, C.; Chalkias, G.; Grigoropoulou, E.; Manthos, G.; Ferentinou, M. Assessment of the Sensitivity of the Southern Coast of the Gulf of Corinth (Peloponnese, Greece) to Sea-level Rise. Cent. Eur. J. Geosci. 2012, 4, 561–577. [Google Scholar] [CrossRef]
- Ojeda Zújar, J.; Álvarez Francoso, J.I.; Martín Cajaraville, D.; Fraile Jurado, P. El uso de las Tecnologías de la información geográfica para el cálculo del índice de vulnerabilidad costera (CVI) ante una potencial subida del nivel del mar en la costa Andaluza (España). GeoFocus 2009, 9, 83–100. [Google Scholar]
- Hereher, M.E. Coastal Vulnerability Assessment for Egypt’s Mediterranean Coast. Geomat. Nat. Hazards Risk 2013, 6, 342–355. [Google Scholar] [CrossRef]
- UNEP/MAP. State of the Mediterranean Marine and Coastal Environment; UNEP/MAP–Barcelona Convention: Athens, Greece, 2012; Available online: http://www.undp.org/content/dam/turkey/docs/Publications/EnvSust/akdenizrapor.pdf (accessed on 12 February 2018).
- Sánchez-Arcilla, A.; Mosso, C.; Sierra, J.P.; Mestres, M.; Harzallah, A.; Senouci, M.; El Raey, M. Climatic drivers of potential hazards in Mediterranean coasts. Reg. Environ. Chang. 2011, 11, 617–636. [Google Scholar] [CrossRef]
- Tomasicchio, G.R.; Sanchez Arcilla, A.; D’Alessandro, F.; Ilic, S.; James, M.; Fortes, C.J.E.M.; Sancho, F.; Schüttrumpf, H. Large-scale flume experiments on dune erosion processes. J. Hydraul. Res. 2011, 49, 20–30. [Google Scholar] [CrossRef]
- Tomasicchio, G.R.; D’Alessandro, F.; Barbaro, G. Composite modelling for large-scale experiments on wave-dune interactions. J. Hydraul. Res. 2011, 49, 15–19. [Google Scholar] [CrossRef]
- Sancho, F.; Abreu, T.; D’Alessandro, F.; Tomasicchio, G.R.; Silva, P.A. Surf hydrodynamics under collapsing coastal dunes. J. Coast. Res. 2011, 64, 144–148. [Google Scholar]
- D’Alessandro, F.; Tomasicchio, G.R.; Musci, F.; Ricca, A. Dune Erosion Physical, Analytical and Numerical Modelling. In Proceedings of the 33rd International Conference on Coastal Engineering, Santander, Spain, 1–6 July 2012; Printed Online, Paper n. Sediment.32, 2012. Available online: https://icce-ojs-tamu.tdl.org/icce/index.php/icce/article/view/6900/pdf (accessed on 12 February 2018).
- D’Alessandro, F.; Tomasicchio, G.R. Wave-dune interaction and beach resilience in large-scale physical model tests. Coast. Eng. 2016, 116, 15–25. [Google Scholar] [CrossRef]
- Pergent, G.; Pergent-Martini, C.; Boudouresque, C.F. Utilisation de l’herbier à Posidonia oceanica comme indicateur biologique de la qualité du milieu littoral en Méditerranée: État des connaissances. Mesogée 1995, 54, 3–27. [Google Scholar]
- Boudouresque, C.F.; Jeudy de Grissac, A. L’herbier à Posidonia oceanica en Méditerranée: Les interactions entre le plant et le sédiment. J. de Recherche Océanographique 1983, 8, 99–122. [Google Scholar]
- Jeudy de Grissac, A.; Boudouresque, C.F. Rôles des herbiers de phanérogames marines dans les mouvements des sédiments côtiers: Les herbiers à Posidonia oceanica. In Proceedings of the Colloque franco-japonais Oceanographie, Marseille, France, 16–21 September 1985; Volume 1, pp. 143–151. [Google Scholar]
- Blanc, J.J.; Jeudy de Grissac, A. Reflexion sur la regression des herbiers a Posidonies (Departements du var e des bouches di Rhone). In International Workshop on Posidonia Oceanica Meadows; GIS Posidonie Publisher: Carry-le-Rouet, France, 1989; Volume 2, pp. 273–285. [Google Scholar]
- Basterretxea, G.; Orfila, A.; Jordi, A.; Casas, B.; Lynett, P.; Liu, P.L.F.; Duarte, C.M.; Tintor, J. Seasonal Dynamics of a Microtidal Pocket Beach with Posidonia oceanica Seabeds (Mallorca, Spain). J. Coast. Res. 2004, 20, 1155–1164. [Google Scholar] [CrossRef]
- Cavazza, W.; Immordino, F.; Moretti, L.; Peirano, A.; Pironi, A.; Ruggiero, F. Sedimentological parameters and seagrass distributions as indicators of anthropogenic coastal degradation at Monterosso Bay (Ligurian Sea, NW Italy). J. Coast. Res. 2000, 16, 295–305. [Google Scholar]
- De Falco, G.; Molinaroli, E.; Baroli, M.; Bellacicco, S. Grain size and compositional trends of sediments from Posidonia oceanica meadows to beach shore, Sardinia, Western Mediterranean. Estuar. Coast. Shelf Sci. 2003, 58, 299–309. [Google Scholar] [CrossRef]
- Di Carlo, G.; Badalamenti, F.; Jensen, A.C.; Kock, E.W.; Riggio, S. Colonisation process of vegetative fragments of Posidonia oceanica (L.) Delile on rubble mounds. Mar. Biol. 2005, 147, 1261–1270. [Google Scholar] [CrossRef]
- Pasqualini, V.; Pergent-Martini, C.; Clabaut, P.; Pergent, G. Mapping of Posidonia oceanica using aerial photographs and side scan sonar: Application off the island of Corsica. Estuar. Coast. Shelf Sci. 1998, 47, 359–368. [Google Scholar] [CrossRef]
- De Falco, G.; Baroli, M.; Murru, E.; Piergallini, G.; Cancemi, G. Sediment analysis evidences two different depositional phenomena influencing seagrass distribution in the Gulf of Oristano (Sardinia—Western Mediterranean). J. Coast. Res. 2006, 22, 1043–1050. [Google Scholar] [CrossRef]
- De Falco, G.; Simeone, S.; Baroli, M. Management of Beach-Cast Posidonia oceanica Seagrass on the Island of Sardinia (Italy, Western Mediterranean). J. Coast. Res. 2008, 24, 69–75. [Google Scholar] [CrossRef]
- Boudouresque, C.F.; Bernard, G.; Bonhomme, P.; Charbonnel, E.; Diviacco, G.; Meinesz, A.; Pergent, G.; Pergent-Martini, C.; Ruitton, S.; Tunesi, L. Protection and Conservation of Posidonia Oceanica Meadows; RaMoGe and RAC/SPA: Tunis, Tunisia, 2012. [Google Scholar]
- Vacchi, M.; De Falco, G.; Simeone, S.; Montefalcone, M.; Morri, C.; Ferrari, M.; Bianchi, C.N. Biogeomorphology of the Mediterranean Posidonia oceanica seagrass meadows. Earth Surf. Process. Landf. 2017, 42, 42–54. [Google Scholar] [CrossRef]
- Sit-Apulia. Available online: http://www.sit.puglia.it/ (accessed on 22 January 2018).
- Pendleton, E.A.; Thieler, E.R.; Williams, S.J. Coastal Vulnerability Assessment of Golden Gate National Recreation Area to Sea-Level Rise. U.S. Geological Survey Open-File Report 2005-1058. Available online: https://pubs.usgs.gov/of/2005/1058/ (accessed on 12 February 2018).
- NOAA. Available online: https://www.star.nesdis.noaa.gov/sod/lsa/SeaLevelRise (accessed on 26 February 2018).
- EEA Database. Available online: https://www.eea.europa.eu (accessed on 26 February 2018).
- Report Regione Apulia. Inventario e Cartografia delle Praterie di Posidonia nei Compartimenti Marittima di Manfredonia, Molfetta, Bari, Brindisi, Gallipoli e Taranto. 2005. Available online: http://www.pugliamare.it/studi/Inventario%20e%20cartografia%20delle%20praterie%20di%20posidonia/RELAZIONE%20ANALITICA.pdf (accessed on 12 February 2018).
- Hammar-Klose, E.S.; Pendleton, E.A.; Thieler, E.R.; Williams, S.J. Coastal Vulnerability Assessment of Cape Cod National Seashore to Sea-Level Rise. USGS Open-File Report 02-233. Available online: https://pubs.usgs.gov/of/2002/of02-233/caco.htm (accessed on 12 February 2018).
- Eurosion Project. Available online: http://www.eurosion.org/ (accessed on 27 February 2018).
- Tragaki, A.; Gallousi, C.; Karymbalis, E. Coastal hazard vulnerability assessment based on geomorphic, oceanographic and demographic parameters: The case of the Peloponnese (Southern Greece). Land 2018, 7, 56. [Google Scholar] [CrossRef]
- Tomasicchio, G.R.; Francone, A.; D’Alessandro, F.; Medellin, G.; Torres-Freyermuth, A.; Barbaro, G. Morphodynamic model to simulate shoreline evolution at any coastal mound. In Proceedings of the 36th International Conference on Coastal Engineering, Baltimore, MD, USA, 30 July–3 August 2018. in press. [Google Scholar]
- Luijendijk, A.; Hagenaars, G.; Ranasinghe, R.; Baart, F.; Donchyts, G.; Aarninkhof, F. The State of the World’s Beaches. Sci. Rep. 2018, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Jezek, K.C. Automated extraction of coastline from satellite imagery by integrating Canny edge detection and locally adaptive thresholding methods. Int. J. Remote Sens. 2004, 25, 937–958. [Google Scholar] [CrossRef]
- García-Rubio, G.; Huntley, D.; Kingston, K.; Esteves, L. Shoreline identfication using satellite images. In Proceedings of Coastal Dynamics 2009; World Scientific: Singapore, 2009; pp. 1–10. [Google Scholar] [CrossRef]
- Goncalves, G.; Duro, N.; Sousa, E.; Figueiredo, I. Automatic extraction of tide-coordinated shoreline using open source software and landsat imagery. In Proceedings of the ISPRS—The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Berlin, Germany, 11–15 May 2015; Volume XL-7/W3, pp. 953–957. [Google Scholar]
- Pardo Pascual, J.E.; Almonacid Caballer, J.; Ruiz Fernández, L.Á.; Palomar-Vázquez, J. Automatic extraction of shorelines from Landsat TM and ETM+ multi-temporal images with subpixel precision. Remote Sens. Environ. 2012, 123, 1–11. [Google Scholar] [CrossRef]
- Giardino, A.; Nederhoff, K.; Vousdoukas, M. Coastal hazard risk assessment for small islands: Assessing the impact of climate change and disaster reduction measures on Ebeye (Marshall Islands). Reg. Environ. Chang. 2018, 1–12. [Google Scholar] [CrossRef]
- Roelvink, J.A.; Reniers, A.; Van Dongeren, A.; Van Thiel de Vries, J.; McCall, R.; Lescinksi, J. Modelling storm impacts on beaches, dunes and barrier islands. J. Coast. Eng. 2009, 56, 1133–1152. [Google Scholar] [CrossRef]
Type Variables | Variables | Score | ||||
---|---|---|---|---|---|---|
Very Low 1 | Low 2 | Moderate 3 | High 4 | Very High 5 | ||
Geologic | Geomorphology | Rocky, cliffed coasts | Medium cliffs, indented coasts | Low cliffs, alluvial plains | Cobble beaches, estuary, lagoon | Barrier beaches, sand beaches, salt marsh, mud flats, deltas, coral reefs |
Coastal slope (%) | >12 | 8–12 | 4–8 | 2–4 | <2 | |
Shoreline Erosion/accretion (m/year) | >(+ 1.5) | (+1.5)–(+0.5) | (−0.5)–(+0.5) | (−0.5)–(−1.5) | <(−1.5) | |
Emerged beach width (m) | >100 | 50–100 | 25–50 | 10–25 | <10 | |
Dune width (m) | >100 | 75–100 | 50–75 | 25–50 | <25 | |
Physical process | Relative sea-level change (mm/year) | <1.8 | 1.8–2.5 | 2.5–3.0 | 3.0–3.4 | >3.4 |
Mean significant wave height (m) | <0.3 | 0.3–0.6 | 0.6–0.9 | 0.9–1.2 | >1.2 | |
Mean tide range (m) | >0.8 | 0.6–0.8 | 0.4–0.6 | 0.2–0.4 | <0.2 | |
Vegetation | Width of vegetation behind the beach (m) | >400 | 200–400 | 100–200 | 50–100 | <50 |
Posidonia oceanica (Boolean: presence/absence) | Present | Absent |
Category | CVI Values |
---|---|
Low | <72.43 |
Moderate | 72.43–84.85 |
High | 84.85–163.62 |
Very-high | >163.62 |
Transect | a | b | c | d | e | f | g | h | i | l | CVI Value | CVI Category |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 5 | 5 | 1 | 3 | 5 | 2 | 4 | 5 | 5 | 1 | 86.60 | High |
2 | 5 | 5 | 1 | 4 | 5 | 2 | 4 | 5 | 5 | 5 | 223.60 | Very High |
3 | 5 | 5 | 2 | 4 | 5 | 2 | 4 | 5 | 5 | 1 | 141.42 | High |
4 | 5 | 5 | 1 | 4 | 5 | 2 | 4 | 5 | 3 | 1 | 77.46 | Moderate |
5 | 5 | 5 | 1 | 3 | 4 | 2 | 4 | 5 | 5 | 1 | 77.46 | Moderate |
6 | 5 | 5 | 5 | 4 | 3 | 2 | 4 | 5 | 3 | 5 | 300.00 | Very High |
7 | 5 | 5 | 1 | 4 | 4 | 2 | 4 | 5 | 3 | 5 | 154.91 | High |
8 | 5 | 5 | 1 | 4 | 4 | 2 | 4 | 5 | 3 | 1 | 69.28 | Moderate |
9 | 5 | 5 | 4 | 4 | 5 | 2 | 4 | 5 | 2 | 1 | 126.49 | High |
10 | 5 | 5 | 2 | 4 | 4 | 2 | 4 | 5 | 3 | 1 | 97.98 | High |
11 | 5 | 5 | 2 | 4 | 4 | 2 | 4 | 5 | 2 | 1 | 80.00 | Moderate |
12 | 5 | 5 | 2 | 3 | 4 | 2 | 4 | 5 | 2 | 1 | 69.28 | Moderate |
13 | 5 | 5 | 3 | 3 | 3 | 2 | 4 | 5 | 2 | 1 | 73.48 | Moderate |
14 | 5 | 5 | 2 | 3 | 3 | 2 | 4 | 5 | 4 | 5 | 189.73 | Very High |
15 | 5 | 5 | 2 | 3 | 5 | 2 | 4 | 5 | 5 | 5 | 273.86 | Very High |
16 | 3 | 5 | 2 | 4 | 5 | 2 | 4 | 5 | 5 | 5 | 244.94 | Very High |
17 | 3 | 5 | 2 | 4 | 5 | 2 | 4 | 5 | 4 | 5 | 219.08 | Very High |
18 | 3 | 5 | 1 | 4 | 5 | 2 | 4 | 5 | 4 | 1 | 69.28 | Moderate |
19 | 3 | 5 | 2 | 3 | 5 | 2 | 4 | 5 | 4 | 1 | 84.85 | Moderate |
20 | 3 | 5 | 1 | 3 | 5 | 2 | 4 | 5 | 1 | 1 | 30.00 | Low |
21 | 3 | 5 | 2 | 3 | 5 | 2 | 4 | 5 | 4 | 1 | 84.85 | Moderate |
22 | 3 | 5 | 2 | 3 | 5 | 2 | 4 | 5 | 1 | 1 | 42.42 | Low |
23 | 3 | 5 | 1 | 3 | 5 | 2 | 4 | 5 | 5 | 1 | 67.08 | Low |
24 | 3 | 5 | 2 | 2 | 5 | 2 | 4 | 5 | 5 | 1 | 77.46 | Moderate |
Transect | Proposed CVI | CSI Karymbalis et al. [37] |
---|---|---|
1 | High | Moderate |
2 | Very high | Moderate |
3 | High | Very high |
4 | Moderate | Moderate |
5 | Moderate | Moderate |
6 | Very high | Very high |
7 | High | Moderate |
8 | Moderate | Moderate |
9 | High | Very high |
10 | High | Very high |
11 | Moderate | Very high |
12 | Moderate | Very high |
13 | Moderate | Very high |
14 | Very high | Very high |
15 | Very high | Very high |
16 | Very high | High |
17 | Very high | High |
18 | Moderate | Low |
19 | Moderate | High |
20 | Low | Low |
21 | Moderate | High |
22 | Low | High |
23 | Low | Low |
24 | Moderate | High |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pantusa, D.; D’Alessandro, F.; Riefolo, L.; Principato, F.; Tomasicchio, G.R. Application of a Coastal Vulnerability Index. A Case Study along the Apulian Coastline, Italy. Water 2018, 10, 1218. https://doi.org/10.3390/w10091218
Pantusa D, D’Alessandro F, Riefolo L, Principato F, Tomasicchio GR. Application of a Coastal Vulnerability Index. A Case Study along the Apulian Coastline, Italy. Water. 2018; 10(9):1218. https://doi.org/10.3390/w10091218
Chicago/Turabian StylePantusa, Daniela, Felice D’Alessandro, Luigia Riefolo, Francesca Principato, and Giuseppe Roberto Tomasicchio. 2018. "Application of a Coastal Vulnerability Index. A Case Study along the Apulian Coastline, Italy" Water 10, no. 9: 1218. https://doi.org/10.3390/w10091218