Abundant and Rare Bacterioplankton in Freshwater Lakes Subjected to Different Levels of Tourism Disturbances
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites and Sample Collection
2.2. Measurement of Environmental Factors
2.3. DNA Extraction, Polymerase Chain Reaction (PCR) Amplification, and Illumina MiSeq Sequencing
2.4. Sequence Data Processing
2.5. Abundant and Rare OTUs
2.6. Statistical Analyses
2.7. Nucleotide Sequence Accession Numbers
3. Results
3.1. Water Chemistry
3.2. Alpha Diversity of Bacterioplankton Community
3.3. Bacterioplankton Community Structure
3.4. Effects of Environmental Factors on Bacterioplankton Distribution
4. Discussion
4.1. Water Chemistry Characteristics under Anthropogenic Disturbance
4.2. Alpha Diversity and Composition Comparisons between Abundant and Rare Bacterial Taxa
4.3. Alpha Diversity and Community Composition of Abundant and Rare Bacterial Taxa under Anthropogenic Disturbance
4.4. Linking Environmental Factors with Bacterioplankton Community Composition
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Newton, R.J.; Jones, S.E.; Eiler, A.; McMahon, K.D.; Bertilsson, S. A guide to the natural history of freshwater lake bacteria. Microbiol. Mol. Biol. Rev. 2011, 75, 14–49. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.H.; Huang, S.B.; Sun, G.P.; Xu, Z.C.; Xu, M.Y. Phylogenetic diversity, composition and distribution of bacterioplankton community in the Dongjiang River, China. FEMS Microbiol. Ecol. 2012, 80, 30–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labbate, M.; Seymour, J.R.; Lauro, F.; Brown, M.V. Anthropogenic impacts on the microbial ecology and function of aquatic environments. Front. Microbiol. 2016, 7, 1044. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.Y.; Xu, H.M.; Zeng, J.; Cao, X.Y.; Shen, F.; Yu, Z.B. Community composition and assembly processes of the free-living and particle-attached bacteria in Taihu Lake. FEMS Microbiol. Ecol. 2017, 93, fix062. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.Y.; Cao, X.Y.; Huang, R.; Zeng, J.; Shen, F.; Xu, H.M.; Wang, S.C.; He, X.W.; Yu, Z.B. The heterogeneity of composition and assembly processes of the microbial community between different nutrient loading lake zones in Taihu Lake. Appl. Microbiol. Biotechnol. 2017, 101, 5913–5923. [Google Scholar] [CrossRef] [PubMed]
- Fujii, M.; Kojima, H.; Iwata, T.; Urabe, J.; Fukui, M. Dissolved organic carbon as major environmental factor affecting bacterioplankton communities in mountain lakes of Eastern Japan. Microb. Ecol. 2012, 63, 496–508. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Bian, Y.Q.; Xing, P.; Wu, Q.L. Macrophyte species drive the variation of bacterioplankton community composition in a shallow freshwater lake. Appl. Environ. Microbiol. 2012, 78, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Dokulil, M.; Chen, W.; Cai, Q. Anthropogenic impacts to large lakes in China: The Tai Hu example. Aquat. Ecosyst. Health Manag. 2000, 3, 81–94. [Google Scholar] [CrossRef]
- Zhang, W.L.; Wu, S.X.; Ji, H.J.; Kolbe, H. Estimation of agricultural non-point source pollution in China and the alleviating strategies I. Estimation of agricultural non-point source pollution in China in early 21 century. Sci. Agric. Sin. 2004, 37, 1008–1017. (In Chinese) [Google Scholar]
- Rashid, I.; Romshoo, S.A. Impact of anthropogenic activities on water quality of Lidder River in Kashmir Himalayas. Environ. Monit. Assess. 2013, 185, 4705–4719. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.D.; Jiang, C.L.; Zhu, L.Q.; Wang, X.W.; Hu, X.Q.; Cheng, J.Y.; Xie, M.H. Impact of pond and fence aquaculture on reservoir environment. Water Sci. Eng. 2011, 4, 92–100. [Google Scholar] [CrossRef]
- Wen, B.; Zhang, X.L.; Yang, Z.P.; Xiong, H.G.; Qiu, Y. Influence of tourist disturbance on soil properties, plant communities, and surface water quality in the Tianchi scenic area of Xinjiang, China. J. Arid Land 2016, 8, 304–313. [Google Scholar] [CrossRef]
- Delpla, I.; Jung, A.V.; Baures, E.; Clement, M.; Thomas, O. Impacts of climate change on surface water quality in relation to drinking water production. Environ. Int. 2009, 35, 1225–1233. [Google Scholar] [CrossRef] [PubMed]
- Pejchar, L.; Mooney, H.A. Invasive species, ecosystem services and human well-being. Trends Ecol. Evol. 2009, 24, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Bao, L.; Maruya, K.A.; Snyder, S.A.; Zeng, E.Y. China’s water pollution by persistent organic pollutants. Environ. Pollut. 2012, 163, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Qin, B.Q.; Gao, G.; Zhu, G.W.; Zhang, Y.L.; Song, Y.Z.; Tang, X.M.; Xu, H.; Deng, J.M. Lake eutrophication and its ecosystem response. Chin. Sci. Bull. 2013, 58, 961–970. [Google Scholar] [CrossRef]
- Birch, S.; Mccaskie, J. Shallow urban lakes: A challenge for lake management. Hydrobiologia 1999, 395, 365–377. [Google Scholar] [CrossRef]
- Shao, M.; Tang, X.Y.; Zhang, Y.H.; Li, W.J. City clusters in China: Air and surface water pollution. Front. Ecol. Environ. 2006, 4, 353–361. [Google Scholar] [CrossRef]
- Dickerson, T.L.; Williams, H.N. Functional diversity of bacterioplankton in three North Florida freshwater lakes over an annual cycle. Microb. Ecol. 2014, 67, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Liddle, M.J.; Scorgie, H.R.A. The effects of recreation on freshwater plants and animals: A review. Biol. Conserv. 1980, 17, 183–206. [Google Scholar] [CrossRef]
- Cooper, C.M. Biological effects of agriculturally derived surface water pollutants on aquatic systems—A review. J. Environ. Qual. 1993, 22, 402–408. [Google Scholar] [CrossRef]
- Benedetti-Cecchi, L.; Pannacciulli, F.; Bulleri, F.; Moschella, P.S.; Airoldi, L.; Relini, G.; Cinelli, F. Predicting the consequences of anthropogenic disturbance: Large-scale effects of loss of canopy algae on rocky shores. Mar. Ecol. Prog. Ser. 2001, 214, 137–150. [Google Scholar] [CrossRef]
- Rehage, J.S.; Trexler, J.C. Assessing the net effect of anthropogenic disturbance on aquatic communities in wetlands: Community structure relative to distance from canals. Hydrobiologia 2006, 569, 359–373. [Google Scholar] [CrossRef]
- Nogales, B.; Lanfranconi, M.P.; Piña-Villalonga, J.M.; Bosch, R. Anthropogenic perturbations in marine microbial communities. FEMS Microbiol. Rev. 2011, 35, 275–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeffries, T.C.; Fontes, M.L.S.; Harrison, D.P.; Van-Dongen-Vogels, V.; Eyre, B.D.; Ralph, P.J.; Seymour, J.R. Bacterioplankton dynamics within a large anthropogenically impacted urban estuary. Front. Microbiol. 2016, 6, 1438. [Google Scholar] [CrossRef] [PubMed]
- Jordaan, K.; Bezuidenhout, C.C. Bacterial community composition of an urban river in the North West Province, South Africa, in relation to Physico-chemical water quality. Environ. Sci. Pollut. Res. 2016, 23, 5868–5880. [Google Scholar] [CrossRef] [PubMed]
- Sogin, M.L.; Morrison, H.G.; Huber, J.A.; Mark Welch, D.; Huse, S.M.; Neal, P.R.; Arrieta, J.M.; Herndl, G.J. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl. Acad. Sci. USA 2006, 103, 12115–12120. [Google Scholar] [CrossRef] [PubMed]
- Logares, R.; Haverkamp, T.H.A.; Kumar, S.; Kumar, S.; Lanzen, A.; Nederbragt, A.J.; Quince, C.; Kauserud, H. Environmental microbiology through the lens of high-throughput DNA sequencing: Synopsis of current platforms and bioinformatics approaches. J. Microbiol. Methods 2012, 91, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Pedrós-Alió, C. The rare bacterial biosphere. Annu. Rev. Mar. Sci. 2012, 4, 449–466. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.S.; Jeong, J.Y.; Wells, G.F.; Park, H.D. General and rare bacterial taxa demonstrating different temporal dynamic patterns in an activated sludge bioreactor. Appl. Microbiol. Biotechnol. 2013, 97, 1755–1765. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.M.; Yang, J.; Yu, Z.; Wilkinson, D.M. The biogeography of abundant and rare bacterioplankton in the lakes and reservoirs of China. ISME J. 2015, 9, 2068–2077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neuenschwander, S.M.; Pernthaler, J.; Posch, T.; Salcher, M.M. Seasonal growth potential of rare lake water bacteria suggest their disproportional contribution to carbon fluxes. Environ. Microbiol. 2015, 17, 781–795. [Google Scholar] [CrossRef] [PubMed]
- Logares, R.; Lindström, E.S.; Langenheder, S.; Logue, J.B.; Paterson, H.; Laybourn-Parry, J.; Rengefors, K.; Tranvik, L.; Bertilsson, S. Biogeography of bacterial communities exposed to progressive long-term environmental change. ISME J. 2013, 7, 937–948. [Google Scholar] [CrossRef] [PubMed]
- Baltar, F.; Palovaara, J.; Vila-Costa, M.; Salazar, G.; Calvo, E.; Pelejero, C.; Marrasé, C.; Gasol, J.M.; Pinhassi, J. Response of rare, common and abundant bacterioplankton to anthropogenic perturbations in a Mediterranean coastal site. FEMS Microbiol. Ecol. 2015, 91, fiv058. [Google Scholar] [CrossRef] [PubMed]
- Li, H.B.; Zeng, J.; Ren, L.J.; Wang, J.J.; Xing, P.; Wu, Q.L.L. Contrasting patterns of diversity of abundant and rare bacterioplankton in freshwater lakes along an elevation gradient. Limnol. Oceanogr. 2017, 62, 1570–1585. [Google Scholar] [CrossRef]
- Rice, E.W.B.; Eaton, R.B.; Clesceri, A.D.; Bridgewater, L.S. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- Jespersen, A.M.; Christoffersen, K. Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent. Arch. Hydrobiol. 1987, 109, 445–454. [Google Scholar]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Huntley, J.; Fierer, N.; Owens, S.M.; Betley, J.; Fraser, L.; Bauer, M.; et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012, 6, 1621–1624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huse, S.M.; Welch, D.M.; Morrison, H.G.; Sogin, M.L. Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ. Microbiol. 2010, 12, 1889–1898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [PubMed]
- Schloss, P.D.; Handelsman, J. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl. Environ. Microbiol. 2005, 71, 1501–1506. [Google Scholar] [CrossRef] [PubMed]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [PubMed]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 2009, 26, 1641–1650. [Google Scholar] [CrossRef] [PubMed]
- Faith, D.P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 1992, 61, 1–10. [Google Scholar] [CrossRef]
- Kunin, V.; Engelbrektson, A.; Ochman, H.; Hugenholtz, P. Wrinkles in the rare biosphere: Pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ. Microbiol. 2010, 12, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Bray, J.R.; Curtis, J.T. An ordination of the Upland forest communities of southern Wisconsin. Ecol. Monogr. 1957, 27, 326–349. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014. [Google Scholar]
- Gong, J.; Shi, F.; Ma, B.; Dong, J.; Pachiadaki, M.; Zhang, X.L.; Edgcomb, V.P. Depth shapes α- and β-diversities of microbial eukaryotes in surficial sediments of coastal ecosystems. Environ. Microbiol. 2015, 17, 3722–3737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiao, S.; Luo, Y.T.; Lu, M.M.; Xiao, X.; Lin, Y.B.; Chen, W.M.; Wei, G.H. Distinct succession patterns of abundant and rare bacteria in temporal microcosms with pollutants. Environ. Pollut. 2017, 225, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Jiao, S.; Chen, W.M.; Wei, G.H. Biogeography and ecological diversity patterns of rare and abundant bacteria in oil-contaminated soils. Mol. Ecol. 2017, 26, 5305–5317. [Google Scholar] [CrossRef] [PubMed]
- Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 2003, 14, 927–930. [Google Scholar] [CrossRef]
- Hu, A.; Ju, F.; Hou, L.; Li, J.; Yang, X.; Wang, H.; Mulla, S.I.; Sun, Q.; Bürgmann, H.; Yu, C.P. Strong impact of anthropogenic contamination on the co-occurrence patterns of a riverine microbial community. Environ. Microbiol. 2017, 19, 4993–5009. [Google Scholar] [CrossRef] [PubMed]
- Mykrä, H.; Tolkkinen, M.; Heino, J. Environmental degradation results in contrasting changes in the assembly processes of stream bacterial and fungal communities. Oikos 2017, 126, 1291–1298. [Google Scholar] [CrossRef]
- Zhao, D.Y.; Wang, M.; Zeng, J.; Yan, W.M.; Wang, J.Q.; Ma, T.; Huang, R. Bacterial community compositions in response to sediment properties in urban lakes of Nanjing. Afr. J. Microbiol. Res. 2012, 6, 2929–2940. [Google Scholar] [CrossRef]
- Gao, C.; Zhu, J.Y.; Dai, K.W.; Gao, S.; Dou, Y.J. Impact of rapid urbanization on water quality and related mitigation options in Taihu Lake area. Sci. Geogr. Sin. 2003, 23, 746–750. (In Chinese) [Google Scholar]
- Wang, X.L.; Lu, Y.L.; Han, J.Y.; He, G.Z.; Wang, T.Y. Identification of anthropogenic influences on water quality of rivers in Taihu watershed. J. Environ. Sci. 2007, 19, 475–481. [Google Scholar] [CrossRef] [Green Version]
- Le, C.; Zha, Y.; Li, Y.; Sun, D.; Lu, H.; Yin, B. Eutrophication of lake waters in China: Cost, causes, and control. Environ. Manag. 2010, 45, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Kaup, E.; Burgess, J.S. Surface and subsurface flows of nutrients in natural and human impacted lake catchments on Broknes, Larsemann Hills, Antarctica. Antarct. Sci. 2002, 14, 343–352. [Google Scholar] [CrossRef] [Green Version]
- Lynch, M.D.J.; Neufeld, J.D. Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 2015, 13, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.Q.; Cao, X.F.; Wang, J.; Zhao, L.; Sun, J.H.; Jiang, D.L.; Huang, Y. Similar community assembly mechanisms underlie similar biogeography of rare and abundant bacteria in lakes on Yungui Plateau, China. Limnol. Oceanogr. 2017, 62, 723–735. [Google Scholar] [CrossRef] [Green Version]
- Pedrós-Alió, C. Marine microbial diversity: Can it be determined? Trends Microbiol. 2006, 14, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Galand, P.E.; Casamayor, E.O.; Kirchman, D.L.; Lovejoy, C. Ecology of the rare microbial biosphere of the Arctic Ocean. Proc. Natl. Acad. Sci. USA 2009, 106, 22427–22432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, B.J.; Yu, L.Y.; Heidelberg, J.F.; Kirchman, D.L. Activity of abundant and rare bacteria in a coastal ocean. Proc. Natl. Acad. Sci. USA 2011, 108, 12776–12781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, C.M.; Graf, D.R.H.; Bru, D.; Philippot, L.; Hallin, S. The unaccounted yet abundant nitrous oxide-reducing microbial community: A potential nitrous oxide sink. ISME J. 2013, 7, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Lawson, C.E.; Strachan, B.J.; Hanson, N.W.; Hahn, A.S.; Hall, E.R.; Rabinowitz, B.; Mavinic, D.S.; Ramey, W.D.; Hallam, S.J. Rare taxa have potential to make metabolic contributions in enhanced biological phosphorus removal ecosystems. Environ. Microbiol. 2015, 17, 4979–4993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hambright, K.D.; Beyer, J.E.; Easton, J.D.; Zamor, R.M.; Easton, A.C.; Hallidayschult, T.C. The niche of an invasive marine microbe in a subtropical freshwater impoundment. ISME J. 2015, 9, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Magic-Knezev, A.; Wullings, B.; Van der Kooij, D. Polaromonas and Hydrogenophaga species are the predominant bacteria cultured from granular activated carbon filters in water treatment. J. Appl. Microbiol. 2009, 107, 1457–1467. [Google Scholar] [CrossRef] [PubMed]
- Kertesz, M.A.; Kawasaki, A. Hydrocarbon-degrading Sphingomonads: Sphingomonas, Sphingobium, Novosphingobium, and Sphingopyxis. In Handbook of Hydrocarbon and Lipid Microbiology; Timmis, K.N., Ed.; Springer: Berlin, Germany, 2010; pp. 1693–1705. ISBN 978-3-540-77584-3. [Google Scholar]
- Zhang, S.Y.; Wan, R.; Wang, Q.F.; Xie, S.G. Identification of anthracene degraders in leachate-contaminated aquifer using stable isotope probing. Int. Biodeterior. Biodegrad. 2011, 65, 1224–1228. [Google Scholar] [CrossRef]
- Liao, X.B.; Chen, C.; Wang, Z.; Wan, R.; Chang, C.H.; Zhang, X.J.; Xie, S.G. Changes of biomass and bacterial communities in biological activated carbon filters for drinking water treatment. Process Biochem. 2013, 48, 312–316. [Google Scholar] [CrossRef]
- Shiratori-Takano, H.; Takano, H.; Ueda, K. Whole-genome sequence of Filimonas lacunae, a bacterium of the family Chitinophagaceae characterized by marked colony growth under a high-CO2 atmosphere. Genome Announc. 2016, 4, e00667-16. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Pan, Y.; Yang, J.; Chen, H.; Holohan, B.; Vaudrey, J.; Lin, S.; McManus, G.B. The diversity and biogeography of abundant and rare intertidal marine microeukaryotes explained by environment and dispersal limitation. Environ. Microbiol. 2018, 20, 462–476. [Google Scholar] [CrossRef] [PubMed]
- Lennon, J.T.; Jones, S.E. Microbial seed banks: The ecological and evolutionary implications of dormancy. Nat. Rev. Microbiol. 2011, 9, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Teira, E.; Lekunberri, I.; Gasol, J.; Nieto-Cid, M.; Álvarez-Salgado, X.A.; Figueiras, P.G. Dynamics of the hydrocarbon-degrading Cycloclasticus bacteria during mesocosm-simulated oil spills. Environ. Microbiol. 2007, 9, 2551–2562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Category | Lake Name (Abbreviation) | Locations | Limnological Characteristics | Water Chemistry | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Longitude | Latitude | Water Depth (m) | Surface Area (km2) | TN (mg/L) | TP (mg/L) | NO3−-N (mg/L) | PO43−-P (μg/L) | NH4+-N (mg/L) | DOC (mg/L) | pH | Chl-a (μg/L) | ||
Low | Shanghuangma (SHM) | 118.8803° E | 32.0818° N | 3.1 | 0.05 | 1.34 | 0.022 | 0.707 | 0.234 | 0.032 | 8.28 | 8.29 | 11.45 |
Xiahuangma (XHM) | 118.8854° E | 32.0783° N | 5.8 | 0.12 | 1.27 | 0.024 | 0.480 | 0.081 | 0.026 | 8.69 | 9.07 | 4.32 | |
Guanlian lake (GL) | 118.8861° E | 32.0779° N | 2.4 | 0.04 | 0.67 | 0.018 | 0.246 | 0.409 | 0.064 | 6.03 | 8.71 | 4.80 | |
Mean ± SD | 1.09 ± 0.37 a | 0.021 ± 0.003 a | 0.478 ± 0.231 a | 0.241 ± 0.164 a | 0.041 ± 0.020 a | 7.67 ± 1.43 a | 8.69 ± 0.39 a | 6.86 ± 3.99 a | |||||
Moderate | Zhongshan lake1 (ZS1) | 118.8797° E | 32.0566° N | 2.6 | 0.01 | 3.97 | 0.050 | 3.250 | 0.123 | 0.078 | 11.47 | 8.41 | 10.13 |
Zhongshan lake2 (ZS2) | 118.8784° E | 32.0551° N | 3.4 | 0.01 | 1.79 | 0.042 | 1.469 | 2.299 | 0.070 | 10.97 | 8.70 | 17.12 | |
Zhongshan lake3 (ZS3) | 118.8783° E | 32.0499° N | 1.9 | 0.05 | 0.54 | 0.033 | 0.052 | 0.488 | 0.031 | 8.79 | 8.71 | 12.01 | |
Meihua Lake (MH) | 118.8406° E | 32.0504° N | 2.2 | 0.04 | 0.50 | 0.023 | 0.059 | 0.205 | 0.037 | 7.78 | 9.11 | 8.85 | |
Mean ± SD | 1.70 ± 1.63 a | 0.037 ± 0.012 a | 1.208 ± 1.516 a | 0.779 ± 1.025 a, b | 0.054 ± 0.023 a | 9.75 ± 1.76 a | 8.73 ± 0.29 a | 12.03 ± 3.63 a | |||||
High | Pipa lake (PP) | 118.8290° E | 32.0597° N | 1.0 | 0.05 | 0.98 | 0.083 | 0.143 | 5.983 | 0.035 | 7.14 | 9.00 | 60.69 |
Yueya south lake (YY) | 118.8351° E | 32.0438° N | 2.1 | 0.11 | 3.66 | 0.143 | 1.166 | 1.489 | 1.039 | 8.74 | 8.99 | 215.15 | |
Qianhu lake (QH) | 118.8379° E | 32.0536° N | 2.0 | 0.11 | 1.14 | 0.112 | 0.032 | 2.895 | 0.405 | 10.00 | 9.45 | 314.29 | |
Xuanwu lake1 (XW1) | 118.7973° E | 32.0911° N | 1.3 | 1.42 | 1.64 | 0.092 | 0.997 | 0.667 | 0.054 | 4.29 | 9.29 | 73.38 | |
Xuanwu lake2 (XW2) | 118.7967° E | 32.0728° N | 1.5 | 0.45 | 1.56 | 0.090 | 0.734 | 3.675 | 0.062 | 4.04 | 9.40 | 71.85 | |
Mean ± SD | 1.80 ± 1.08 a | 0.104 ± 0.024 b | 0.614 ± 0.507 a | 2.942 ± 2.066 b | 0.319 ± 0.431 a | 6.84 ± 2.65 a | 9.23 ± 0.22 b | 147.07 ± 113.08 b |
Taxon | Phylum | Genus (Abundance on Average, %) | Low | Moderate | High | p-Value |
---|---|---|---|---|---|---|
Abundant | Bacteroidetes | Ferruginibacter (<1.0%) | b | a | b | 0.011 |
Flavobacterium (3.57%) | a | b | b | 0.044 | ||
Fluviicola (2.62%) | a | b | b | 0.048 | ||
Proteobacteria | Alsobacter (<0.5%) | a | b | b | 0.005 | |
Hydrogenophaga (<1.0%) | a | b | a | 0.044 | ||
Methylocaldum (<0.5%) | b | a | a | 0.046 | ||
Rhodobacter (<1.0%) | a | b | a | 0.038 | ||
Rhodovarius (<0.5%) | b | a | ab | 0.021 | ||
Sphingopyxis (<0.5%) | a | b | a | 0.016 | ||
Rare | Bacteroidetes | Filimonas (<0.5%) | ab | a | b | 0.041 |
Proteobacteria | Aquicella (<0.5%) | b | a | a | 0.026 | |
Defluviicoccus (<0.1%) | a | b | a | 0.008 | ||
Diplorickettsia (<0.1%) | b | a | a | 0.017 | ||
Haliangium (<0.5%) | b | a | a | 0.001 | ||
Hydrogenophaga (<0.1%) | a | b | a | 0.000 | ||
Phaselicystis (<0.1%) | b | a | a | 0.007 | ||
Silanimonas (<0.5%) | a | b | a | 0.038 | ||
Verrucomicrobia | Candidatus_Methylacidiphilum (<0.5%) | b | a | ab | 0.021 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, C.; Zhao, D.; Huang, R.; Cao, X.; Zeng, J.; Lin, Y.; Zhao, W. Abundant and Rare Bacterioplankton in Freshwater Lakes Subjected to Different Levels of Tourism Disturbances. Water 2018, 10, 1075. https://doi.org/10.3390/w10081075
Jiao C, Zhao D, Huang R, Cao X, Zeng J, Lin Y, Zhao W. Abundant and Rare Bacterioplankton in Freshwater Lakes Subjected to Different Levels of Tourism Disturbances. Water. 2018; 10(8):1075. https://doi.org/10.3390/w10081075
Chicago/Turabian StyleJiao, Congcong, Dayong Zhao, Rui Huang, Xinyi Cao, Jin Zeng, Yuqing Lin, and Wenjie Zhao. 2018. "Abundant and Rare Bacterioplankton in Freshwater Lakes Subjected to Different Levels of Tourism Disturbances" Water 10, no. 8: 1075. https://doi.org/10.3390/w10081075