A New Assessment of Hydrological Change in the Source Region of the Yellow River
Abstract
:1. Introduction
2. Study Area and Data Processing
2.1. Catchments and Sub-Basins
2.2. Data Processing
3. Methods
3.1. Budyko Framework
3.2. The Traditional Separation Approach
3.3. Further Attribution Analysis Based on the Modified Separation Approach
3.4. Selection of the Budyko Formula
4. Results
4.1. Climate and Discharge Changes
4.2. Time-Varying w Value
4.3. Results of Using Equation (8)
4.4. Results of Using Equation (9)
5. Discussions
5.1. The Role of Temperature in Discharge Change
5.2. The Role of Frozen-Ground Degradation in Discharge Change
6. Conclusions
- (1)
- The long-term discharge variations in the SRYR are divided into three periods: a pre-change period (1961–1990), a low-flow period (1991–2002), and a recent period (2003–2013). Compared to the pre-change period, the discharge showed a sharp decrease (of more than 20%) in the low-flow period (1991–2002). In the recent period (2003–2013), the discharge showed a recovery trend; particularly, in the JM sub-basin, the discharge increased by 6.22% relative to the pre-change period.
- (2)
- The change in discharge of the SRYR in the past half-century has been mainly controlled by climate change rather than by local human activities. In the low-flow period (1991–2002), the increase in air temperature and potential evapotranspiration and the decrease in the annual precipitation were the main reasons for a significant decrease in discharge. In the recent period (2003–2013), although the air temperature continued to increase, the increase in precipitation partially offset the air temperature and potential evapotranspiration impacts on discharge, thus leading to a recovery in discharge compared to the low-flow period (1991–2002).
- (3)
- The modified separation approach considered climate change and frozen-ground degradation impacts on the catchment-specific parameter. The changes in the catchment-specific parameters (w) in the SRYR and the three sub-basins were mainly caused by changes in the water-supply-related variable, I, and energy-supply-related variables, T and E0. In addition, the catchment-specific parameters of JM and TNH were correlated with the MFD of frozen ground, which indicates that the impacts of the frozen-ground degradation on hydrological responses in the permafrost dominated the sub-basins.
- (4)
- Increasing air temperature is generally a negative force for discharge. However, in the SRYR, it also causes permafrost degradation that can act as a positive factor for discharge. Such conflicting effects enhance the uncertainty in assessments of the hydrological response to climate change in the sub-basins with widely underlain permafrost.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2007: The Physical Science Basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007; p. 996. [Google Scholar]
- Abdul Aziz, O.I.; Burn, D.H. Trends and variability in the hydrological regime of the Mackenzie River Basin. J. Hydrol. 2006, 319, 282–294. [Google Scholar] [CrossRef]
- Birsan, M.-V.; Molnar, P.; Burlando, P.; Pfaundler, M. Streamflow trends in Switzerland. J. Hydrol. 2005, 314, 312–329. [Google Scholar] [CrossRef]
- Chen, J.; Wu, X.; Finlayson, B.L.; Webber, M.; Wei, T.; Li, M.; Chen, Z. Variability and trend in the hydrology of the Yangtze River, China: Annual precipitation and runoff. J. Hydrol. 2014, 513, 403–412. [Google Scholar] [CrossRef]
- Chiew, F.H.S.; Teng, J.; Vaze, J.; Post, D.A.; Perraud, J.M.; Kirono, D.G.C.; Viney, N.R. Estimating climate change impact on runoff across southeast Australia: Method, results, and implications of the modeling method. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef][Green Version]
- Immerzeel, W.W.; van Beek, L.P.; Bierkens, M.F. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Li, L.; Liu, C.; Cuo, L. Climate change in the Tibetan Plateau Three Rivers Source Region: 1960-2009. Int. J. Climatol. 2013, 33, 2900–2916. [Google Scholar] [CrossRef][Green Version]
- Su, F.; Zhang, L.; Ou, T.; Chen, D.; Yao, T.; Tong, K.; Qi, Y. Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau. Glob. Planet. Chang. 2016, 136, 82–95. [Google Scholar] [CrossRef]
- Liu, C.; Zheng, H. Changes in components of the hydrological cycle in the yellow river basin during the second half of the 20th century. Hydrol. Process. 2004, 18, 2337–2345. [Google Scholar] [CrossRef]
- Yang, D.; Li, C.; Hu, H.; Lei, Z.; Yang, S.; Kusuda, T.; Musiake, K. Analysis of water resources variability in the Yellow River of China during the last half century using historical data. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef][Green Version]
- Lan, Y.; Zhao, G.; Zhang, Y.; Wen, J.; Liu, J.; Hu, X. Response of runoff in the source region of the Yellow River to climate warming. Quat. Int. 2010, 226, 60–65. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, L.; Liu, C.; Shao, Q.; ukushima, Y. Changes in stream flow regime in headwater catchments of the Yellow River basin since the 1950s. Hydrol. Process. 2007, 21, 886–893. [Google Scholar] [CrossRef][Green Version]
- Zhang, Q.; Xu, C.-Y.; Yang, T. Variability of Water Resource in the Yellow River Basin of Past 50 Years, China. Water Resour. Manag. 2008, 23, 1157–1170. [Google Scholar] [CrossRef]
- Cuo, L.; Zhang, Y.; Gao, Y.; Hao, Z.; Cairang, L. The impacts of climate change and land cover/use transition on the hydrology in the upper Yellow River Basin, China. J. Hydrol. 2013, 502, 37–52. [Google Scholar] [CrossRef]
- Liang, S.; Ge, S.; Wan, L.; Zhang, J. Can climate change cause the Yellow River to dry up? Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef][Green Version]
- Hu, Y.; Maskey, S.; Uhlenbrook, S.; Zhao, H. Streamflow trends and climate linkages in the source region of the Yellow River, China. Hydrol. Process. 2011, 25, 3399–3411. [Google Scholar] [CrossRef]
- Tang, Q.; Oki, T.; Kanae, S.; Hu, H. Hydrological cycles change in the Yellow River basin during the last half of the twentieth century. J. Clim. 2008, 21, 1790–1806. [Google Scholar] [CrossRef]
- Tang, Y.; Tang, Q.; Tian, F.; Zhang, Z.; Liu, G. Responses of natural runoff to recent climatic variations in the Yellow River basin, China. Hydrol. Earth Syst. Sci. 2013, 17, 4471–4480. [Google Scholar] [CrossRef][Green Version]
- Meng, F.; Su, F.; Yang, D.; Tong, K.; Hao, Z. Impacts of recent climate change on the hydrology in the source region of the yellow river basin. J. Hydrol. Reg. Stud. 2016, 6, 66–81. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, L.; Zhu, R.; Liu, C.; Sato, Y.; Fukushima, Y. Responses of streamflow to climate and land surface change in the headwaters of the Yellow River Basin. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef][Green Version]
- Zhao, F.; Xu, Z.; Zhang, L.; Zuo, D. Streamflow response to climate variability and human activities in the upper catchment of the Yellow River Basin. Sci. China Ser. E Technol. Sci. 2009, 52, 3249–3256. [Google Scholar] [CrossRef]
- Wang, S.-Y.; Liu, J.-S.; Ma, T.-B. Dynamics and changes in spatial patterns of land use in Yellow River Basin, China. Land Use Policy 2010, 27, 313–323. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, D.; Qiu, G.; Cheng, G. Geocryology in China; Science Press: Beijing, China, 2000; 450p. (In Chinese) [Google Scholar]
- Jin, H.J.; Wang, S.L.; Lü, L.Z.; He, R.X.; Chang, X.L.; Luo, D.L. Features and degradation of frozen ground in the sources area of the Yellow River, China. J. Glaciol. Geocryol. 2010, 49, 5522–5529, (In Chinese with English Abstract). [Google Scholar]
- Jin, H.; He, R.; Cheng, G.; Wu, Q.; Wang, S.; Lü, L.; Chang, X. Changes in frozen ground in the Source Area of the Yellow River on the Qinghai–Tibet Plateau, China, and their eco-environmental impacts. Environ. Res. Lett. 2009, 4, 045206. [Google Scholar] [CrossRef]
- Yang, M.; Nelson, F.E.; Shiklomanov, N.I.; Guo, D.; Wan, G. Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research. Earth-Sci. Rev. 2010, 103, 31–44. [Google Scholar] [CrossRef]
- Wang, T.; Yang, H.; Yang, D.; Qin, Y.; Wang, Y. Quantifying the streamflow response to frozen ground degradation in the source region of the yellow river within the budyko framework. J. Hydrol. 2018, 558, 301–313. [Google Scholar] [CrossRef]
- Walvoord, M.A.; Striegl, R.G. Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: Potential impacts on lateral export of carbon and nitrogen. Geophys. Res. Lett. 2007, 34, 123–134. [Google Scholar] [CrossRef]
- St Jacques, J.M.; Sauchyn, D.J. Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the northwest territories, Canada. Geophys. Res. Lett. 2009, 36, 329–342. [Google Scholar] [CrossRef]
- Bense, V.F.; Kooi, H.; Ferguson, G.; Read, T. Permafrost degradation as a control on hydrogeological regime shifts in a warming climate. J. Geophys. Res. Earth Surf. 2012, 117, 8316. [Google Scholar] [CrossRef]
- McKenzie, J.M.; Voss, C.I. Permafrost thaw in a nested groundwater-flow system. Hydrogeol. J. 2013. [Google Scholar] [CrossRef]
- Evans, S.G.; Ge, S.; Liang, S. Analysis of groundwater flow in mountainous, headwater catchments with permafrost. Water Resour. Res. 2015, 51, 9564–9576. [Google Scholar] [CrossRef][Green Version]
- Duan, L.; Man, X.; Kurylyk, B.L.; Cai, T. Increasing winter baseflow in response to permafrost thaw and precipitation regime shifts in Northeastern China. Water 2017, 9, 25. [Google Scholar] [CrossRef]
- Connon, R.F.; Quinton, W.L.; Craig, J.R.; Hayashi, M. Changing hydrologic connectivity due to permafrost thaw in the lower Liard River valley, NWT, Canada. Hydrol. Process. 2014, 28, 4163–4178. [Google Scholar] [CrossRef]
- Duan, L.; Man, X.; Kurylyk, B.L.; Cai, T.; Li, Q. Distinguishing streamflow trends caused by changes in climate, forest cover, and permafrost in a large watershed in northeastern china. Hydrol. Process. 2017, 31, 1938–1951. [Google Scholar] [CrossRef]
- Yang, D.; Sun, F.; Liu, Z.; Cong, Z.; Ni, G.; Lei, Z. Analyzing spatial and temporal variability of annual water-energy balance in nonhumid regions of China using the Budyko hypothesis. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef][Green Version]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R. Roots, storms and soil pores: Incorporating key ecohydrological processes into Budyko’s hydrological model. J. Hydrol. 2012, 436, 35–50. [Google Scholar] [CrossRef]
- Williams, C.A.; Reichstein, M.; Buchmann, N.; Baldocchi, D.; Beer, C.; Schwalm, C.; Wohlfahrt, G.; Hasler, N.; Bernhofer, C.; Foken, T.; et al. Climate and vegetation controls on the surface water balance: Synthesis of evapotranspiration measured across a global network of flux towers. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef][Green Version]
- Jiang, C.; Xiong, L.; Wang, D.; Liu, P.; Guo, S.; Xu, C.-Y. Separating the impacts of climate change and human activities on runoff using the Budyko-type equations with time-varying parameters. J. Hydrol. 2015, 522, 326–338. [Google Scholar] [CrossRef]
- Wang, T. (Ed.) 1:4,000,000 Map of the Glaciers, Frozen Ground and Deserts in China; Science Press: Beijing, China, 2006; Available online: http://westdc.westgis.ac.cn (accessed on 29 June 2018).
- Allen, R.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper No. 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Budyko, M.I. (Ed.) Climate and Life; Translated from Russian by D. H. Miller; Elsevier: New York, NY, USA, 1974. [Google Scholar]
- Xiong, L.; Guo, S. Appraisal of Budyko formula in calculating long-term water balance in humid watersheds of southern China. Hydrol. Process. 2012, 26, 1370–1378. [Google Scholar] [CrossRef]
- Arora, V.K. The use of the aridity index to assess climate change effect on annual runoff. J. Hydrol. 2002, 265, 164–177. [Google Scholar] [CrossRef]
- Dooge, J.C.I.; Bruen, M.; Parmentier, B. A simple model for estimating the sensitivity of runoff to long-term changes in precipitation without a change in vegetation. Adv. Water Resour. 1999, 23, 153–163. [Google Scholar] [CrossRef]
- Kuhnel, V.; Dooge, J.C.I.; O’Kane, J.C.I.; Romanowicz, R.J. Partial analysis applied to scale problems in surface moisture fluxes. Surv. Geophys. 1991, 12, 221–247. [Google Scholar] [CrossRef]
- Roderick, M.L.; Farquhar, G.D. A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef][Green Version]
- Wang, D.; Hejazi, M. Quantifying the relative contribution of the climate and direct human impacts on mean annual streamflow in the contiguous United States. Water Resour. Res. 2011, 47, 411. [Google Scholar] [CrossRef]
- Yang, H.; Yang, D.; Hu, Q. An error analysis of the Budyko hypothesis for assessing the contribution of climate change to runoff. Water Resour. Res. 2014, 50, 9620–9629. [Google Scholar] [CrossRef][Green Version]
- Neter, J.; Wasserman, W.; Kutner, M.H. Applied Linear Regression Models; Irwin: Homewood, IL, USA, 1989. [Google Scholar]
- Hair, J.F.J.; Anderson, R.E.; Tatham, R.L.; Black, W.C. Multivariate Data Analysis; Macmillan: New York, NY, USA, 1995. [Google Scholar]
- Jolliffe, I.T. Principal components in regression analysis. Princ. Compon. Anal. 2002, 167–198. [Google Scholar] [CrossRef]
- Jou, Y.J.; Cho, H.J. A VIF-Based Optimization Model to Alleviate Collinearity Problems in Multiple Linear Regression; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2014. [Google Scholar]
- Fu, B. The calculation of the evaporation from land surface. Sci. Atmos. Sin. 1981, 5, 23–31. (In Chinese) [Google Scholar]
- Zhang, L.; Hickel, K.; Dawes, W.R.; Chiew, F.H.S.; Western, A.W.; Briggs, P.R. A rational function approach for estimating mean annual evapotranspiration. Water Resour. Res. 2004, 40, 89–97. [Google Scholar] [CrossRef]
- Tang, C.; Crosby, B.T.; Wheaton, J.M.; Piechota, T.C. Assessing streamflow sensitivity to temperature increases in the salmon river basin, Idaho. Glob. Planet. Chang. 2012, 88, 32–44. [Google Scholar] [CrossRef]
- Fu, G.; Chen, S.; Liu, C.; Shepard, D. Hydro-climatic trends of the yellow river basin for the last 50 years. Clim. Chang. 2004, 65, 149–178. [Google Scholar] [CrossRef]
- Huang, Y.; Cai, J.; Yin, H.; Cai, M. Correlation of precipitation to temperature variation in the Huanghe River (Yellow River) basin during 1957–2006. J. Hydrol. 2009, 372, 1–8. [Google Scholar] [CrossRef]
- Wang, W.; Shao, Q.; Yang, T.; Peng, S.; Yu, Z.; Taylor, J.; Xing, W.; Zhao, C.; Sun, F. Changes in daily temperature and precipitation extremes in the Yellow River Basin, China. Stoch. Environ. Res. Risk Assess. 2013, 27, 401–421. [Google Scholar] [CrossRef]
- Goodrich, L.E. The influence of snow cover on the ground thermal regime. Can. Geotech. J. 1982, 19, 421–432. [Google Scholar] [CrossRef][Green Version]
- Nelson, F.E.; Shiklomanov, N.I.; Mueller, G.R. Estimating active layer thickness over a large region: Kaparuk River basin, Alaska, USA. Arct. Alp. Res. 1997, 29, 367–378. [Google Scholar] [CrossRef]
- Yamazaki, T.; Kondo, J.; Nishida, A. Seasonal frost depth of grounds with bare surface, snow cover and vegetation. J. Jpn. Soc. Snow Ice 1998, 60, 213–224. [Google Scholar] [CrossRef]
- Shanley, J.B.; Chalmers, A. The effect of frozen soil on snowmelt runoff at sleepers river, vermont. Hydrol. Process. 1999, 13, 1843–1857. [Google Scholar] [CrossRef]
- Qin, Y.; Lei, H.; Yang, D.; Gao, B.; Wang, Y.; Cong, Z.; Fan, W. Long-term change in the depth of seasonally frozen ground and its ecohydrological impacts in the qilian mountains, northeastern tibetan plateau. J. Hydrol. 2016, 542, 204–221. [Google Scholar] [CrossRef]
Basins | Period | w | P (%) | E0 (%) | Q (%) | ΔQ0 (%) | ΔQw (%) | ΔQ (%) |
---|---|---|---|---|---|---|---|---|
JM | 1961–1990 | 2.10 | Reference Period | |||||
1991–2002 | 2.33 | −3.36 | 1.30 | −27.72 | −7.69 | −20.03 | −27.72 | |
2003–2013 | 2.21 | 11.05 | 3.70 | 6.22 | 18.60 | −12.38 | 6.22 | |
MQ | 1961–1990 | 1.85 | Reference Period | |||||
1991–2002 | 2.01 | −6.56 | 1.54 | −21.89 | −11.43 | −10.47 | −21.89 | |
2003–2013 | 2.08 | 0.96 | 4.41 | −16.60 | −1.18 | −15.42 | −16.60 | |
TNH | 1961–1990 | 1.74 | Reference Period | |||||
1991–2002 | 1.94 | −5.43 | 1.24 | −27.94 | −9.37 | −18.58 | −27.94 | |
2003–2013 | 1.86 | 6.25 | 2.89 | −5.02 | 8.38 | −13.40 | −5.02 | |
SRYR | 1961–1990 | 1.85 | Reference Period | |||||
1991–2002 | 2.04 | −5.23 | 1.36 | −24.81 | −9.63 | −15.17 | −24.81 | |
2003–2013 | 2.03 | 5.52 | 3.67 | −8.70 | 6.83 | −15.53 | −8.70 |
Basins | Models of Equation (7) (Candidates , and ) | R2 |
---|---|---|
JM | 5.229 + 0.466 − 2.582 | 0.83 |
MQ | −3.778 − 1.582 + 7.291 | 0.88 |
TNH | 1.982 + 0.442 − 3.194 + 2.591 | 0.91 |
SRYR | 1.002 + 0.057 − 2.085 + 2.963 | 0.94 |
Station | R2 of MFD–DDF | R2 of MFD–MAT | MFD Record Length (Years) |
---|---|---|---|
M5 | 0.67(+) * | 0.49(−) * | 1960–2004 (45) |
M6 | 0.29(+) | 0.13(−) | 1983–2004 (22) |
M8 | 0.19(+) | 0.41(−) | 1990–1996, 1998–2004 (14) |
M10 | 0.20(+) | 0.08(−) | 1962–2004 (43) |
M11 | 0.59(+) | 0.18(−) | 1991–2004 (14) |
M12 | 0.51(+) | 0.46(−) | 1967–1997 (31) |
M13 | 0.55(+) | 0.41(−) | 1974–2004 (31) |
M14 | 0.46(+) | 0.24(−) | 1966–2004 (39) |
M16 | 0.40(+) | 0.38(−) | 1971–1979, 1995–2004 (28) |
M17 | 0.48(+) | 0.35(−) | 1974–2004 (31) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, P.; Liang, S.; Wang, X.-S.; Feng, Y.; McKenzie, J.M. A New Assessment of Hydrological Change in the Source Region of the Yellow River. Water 2018, 10, 877. https://doi.org/10.3390/w10070877
Wu P, Liang S, Wang X-S, Feng Y, McKenzie JM. A New Assessment of Hydrological Change in the Source Region of the Yellow River. Water. 2018; 10(7):877. https://doi.org/10.3390/w10070877
Chicago/Turabian StyleWu, Pan, Sihai Liang, Xu-Sheng Wang, Yuqing Feng, and Jeffrey M. McKenzie. 2018. "A New Assessment of Hydrological Change in the Source Region of the Yellow River" Water 10, no. 7: 877. https://doi.org/10.3390/w10070877