Analyzing the Role of Shallow Groundwater Systems in the Water Use of Different Land-Use Types in Arid Irrigated Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Field Observations and Data Collection
2.3. Water Balance Method
2.3.1. Water Balance for the Whole Area
2.3.2. Water Balance for Different Land Use Types
3. Results and Discussion
3.1. Evapotranspiration
3.2. Lateral Groundwater Exchange
3.3. The Role of Shallow Groundwater System
3.3.1. Water Storage and Supply
3.3.2. Irrigation Water and Salt Redistribution
3.3.3. Salt Accumulation and Drainage
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Northey, J.E.; Christen, E.W.; Ayars, J.E.; Jankowski, J. Occurrence and measurement of salinity stratification in shallow groundwater in the Murrumbidgee Irrigation Area, south-eastern Australia. Agric. Water Manag. 2006, 81, 23–40. [Google Scholar] [CrossRef]
- Pereira, L.S.; Gonçalves, J.M.; Dong, B.; Mao, Z.; Fang, S.X. Assessing basin irrigation and scheduling strategies for saving irrigation water and controlling salinity in the Upper Yellow River Basin, China. Agric. Water Manag. 2007, 93, 109–122. [Google Scholar] [CrossRef]
- Luo, Y.; Sophocleous, M. Seasonal groundwater contribution to crop-water use assessed with lysimeter observations and model simulations. J. Hydrol. 2010, 389, 325–335. [Google Scholar] [CrossRef]
- Karimov, A.K.; Šimůnek, J.; Hanjra, M.A.; Avliyakulov, M.; Forkutsa, I. Effects of the shallow water table on water use of winter wheat and ecosystem health: Implications for unlocking the potential of groundwater in the Fergana Valley (Central Asia). Agric. Water Manag. 2014, 131, 57–69. [Google Scholar] [CrossRef]
- Schmitter, P.; Zwart, S.J.; Danvi, A.; Gbaguidi, F. Contributions of lateral flow and groundwater to the spatio-temporal variation of irrigated rice yields and water productivity in a West-African inland valley. Agric. Water Manag. 2015, 152, 286–298. [Google Scholar] [CrossRef]
- Ayars, J.E.; Christen, E.W.; Hornbuckle, J.W. Controlled drainage for improved water management in arid regions irrigated agriculture. Agric. Water Manag. 2006, 86, 128–139. [Google Scholar] [CrossRef]
- Christen, E.W.; Ayars, J.E.; Hornbuckle, J.W. Subsurface drainage design and management in irrigated areas of Australia. Irrig. Sci. 2001, 21, 35–43. [Google Scholar] [CrossRef]
- Singh, A.; Krause, P.; Panda, S.N.; Flugel, W.A. Rising water table: A threat to sustainable agriculture in an irrigated semi-arid region of Haryana, India. Agric. Water Manag. 2010, 97, 1443–1451. [Google Scholar] [CrossRef]
- Nosetto, M.D.; Jobbágy, E.G.; Jackson, R.B.; Sznaider, G.A. Reciprocal influence of crops and shallow ground water in sandy landscapes of the Inland Pampas. Field Crops Res. 2009, 113, 138–148. [Google Scholar] [CrossRef]
- Ayars, J.E.; Christen, E.W.; Soppe, R.W.; Meyer, W.S. The resource potential of in-situ shallow ground water use in irrigated agriculture: A review. Irrig. Sci. 2006, 24, 147–160. [Google Scholar] [CrossRef]
- Kahlown, M.A.; Ashra, M.; Zia-ul-Haq. Effect of shallow groundwater table on crop water requirements and crop yields. Agric. Water Manag. 2005, 11, 24–35. [Google Scholar] [CrossRef]
- Ren, D.; Xu, X.; Engel, B.; Huang, G. Growth responses of crops and natural vegetation to irrigation and water table changes in an agro-ecosystem of Hetao, upper Yellow River basin: Scenario analysis on maize, sunflower, watermelon and tamarisk. Agric. Water Manag. 2018, 199, 93–104. [Google Scholar] [CrossRef]
- Šimůnek, J.; van Genuchten, M.T.; Šejna, M. Recent developments and applications of the HYDRUS computer software packages. Vadose Zone J. 2016, 15, 1–25. [Google Scholar] [CrossRef]
- Van Dam, J.C.; Groenendijk, P.; Hendriks, R.F.; Kroes, J.G. Advances of modeling water flow in variably saturated soils with SWAP. Vadose Zone J. 2008, 7, 640–653. [Google Scholar] [CrossRef]
- Harbaugh, A.W.; Banta, E.R.; Hill, M.C.; McDonald, M.G. MODFLOW-2000, the US Geological Survey Modular Groundwater Mode–User Guide to Modularization Concepts and the Groundwater Flow Process; Open-File Report 00-92; US Geological Survey: Reston, VA, USA, 2000. Available online: https://pubs.usgs.gov/of/2000/0092/report.pdf (accessed on 6 May 2018).
- Trefry, M.G.; Muffels, C. FEFLOW: A finite-element ground water flow and transport modeling tool. Groundwater 2007, 45, 525–528. [Google Scholar] [CrossRef]
- Hooghoudt, S.B. Waarnemingen van Grondwaterstanden Voor de Landbouw; Scientific Report [in Dutch]; Verslagen Technische Bijeenkomste; Commissie voor Hydrologisch TNO: The Hague, The Netherlands, 1952; Volume 1–6, pp. 94–110. [Google Scholar]
- Gillham, R.W. The capillary fringe and its effect on water-table response. J. Hydrol. 1984, 67, 307–324. [Google Scholar] [CrossRef]
- Weeks, E.P. The Lisse effect revisited. Groundwater 2002, 40, 652–656. [Google Scholar] [CrossRef]
- Appels, W.M.; Bogaart, P.W.; van der Zee, S.E.A.T.M. Feedbacks between Shallow Groundwater Dynamics and Surface Topography on Runoff Generation in Flat Fields. Water Resour. Res. 2017, 53, 10336–10353. [Google Scholar] [CrossRef]
- Abdulrazzak, M.J.; Sorman, A.U.; Alhames, A.S. Water balance approach under extreme arid conditions—A case study of Tabalah Basin, Saudi Arabia. Hydrol. Processes 1989, 3, 107–122. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Healy, R.W.; Cook, P.G. Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol. J. 2002, 10, 18–39. [Google Scholar] [CrossRef]
- Xu, X.; Huang, G.H.; Qu, Z.Y.; Pereira, L.S. Assessing the groundwater dynamics and predicting impacts of water saving in the Hetao Irrigation District, Yellow River basin. Agric. Water Manag. 2010, 98, 301–313. [Google Scholar] [CrossRef]
- Machiwal, D.; Jha, M.K. GIS-based water balance modeling for estimating regional specific yield and distributed recharge in data-scarce hard-rock regions. J. Hydro-Environ. Res. 2015, 9, 554–568. [Google Scholar] [CrossRef]
- Xu, X.; Huang, G.H.; Qu, Z.Y.; Pereira, L.S. Using MODFLOW and GIS to assess changes in groundwater dynamics in response to water saving measures in irrigation districts of the upper Yellow River basin. Water Resour. Manag. 2011, 25, 2035–2059. [Google Scholar] [CrossRef]
- Miao, Q.; Shi, H.; Gonçalves, J.M.; Pereira, L.S. Field assessment of basin irrigation performance and water saving in Hetao, Yellow River basin: Issues to support irrigation systems modernisation. Biosyst. Eng. 2015, 136, 102–116. [Google Scholar] [CrossRef]
- Miao, Q.; Shi, H.; Gonçalves, J.M.; Pereira, L.S. Basin Irrigation Design with Multi-Criteria Analysis Focusing on Water Saving and Economic Returns: Application to Wheat in Hetao, Yellow River Basin. Water 2018, 10, 67. [Google Scholar] [CrossRef]
- Ren, D.; Xu, X.; Hao, Y.; Huang, G. Modeling and assessing field irrigation water use in a canal system of Hetao, upper Yellow River basin: Application to maize, sunflower and watermelon. J. Hydrol. 2016, 532, 122–139. [Google Scholar] [CrossRef]
- Ren, D.; Xu, X.; Ramos, T.B.; Huang, Q.; Huo, Z.; Huang, G. Modeling and assessing the function and sustainability of natural patches in salt-affected agro-ecosystems: Application to Tamarisk (Tamarix chinensis Lour.) in Hetao, upper Yellow River basin. J. Hydrol. 2017, 552, 490–504. [Google Scholar] [CrossRef]
- Gonçalves, J.M.; Pereira, L.S.; Fang, S.X.; Dong, B. Modelling and multicriteria analysis of water saving scenarios for an irrigation district in the upper Yellow River Basin. Agric. Water Manag. 2007, 94, 93–108. [Google Scholar] [CrossRef]
- Yu, B.; Jiang, L.; Shang, S. Dry drainage effect of Hetao irrigation district based on remote sensing evapotranspiration. Trans. CSAE 2016, 32, 1–8. (In Chinese) [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper No. 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Sophocleous, M. The Role of Specific Yield in Ground-Water Recharge Estimations: A Numerical Study. Groundwater 1985, 23, 52–58. [Google Scholar] [CrossRef]
- Wang, L.P.; Chen, Y.X.; Zeng, G.F. Irrigation, Drainage and Salinization Control in Hetao Irrigation District of Inner Mongolia; Water Resources and Hydraulic Power Publisher: Beijing, China, 1993. (In Chinese) [Google Scholar]
- Jia, S.; Yue, W.; Wang, J. Groundwater balance in the Yichang irrigation sub-district in Inner Mongolia in the past 20 years. J. Beijing Norm. Univ. 2013, 49, 243–245. (In Chinese) [Google Scholar]
- Miao, Q.; Rosa, R.D.; Shi, H.; Paredes, P.; Zhu, L.; Dai, J.; Pereira, L.S. Modeling water use, transpiration and soil evaporation of spring wheat–maize and spring wheat–sunflower relay intercropping using the dual crop coefficient approach. Agric. Water Manag. 2016, 165, 211–229. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, X.; Wu, P.; Chen, X. Effects of water limitation on yield advantage and water use in wheat (Triticum aestivum L.)/maize (Zea mays L.) strip intercropping. Eur. J. Agron. 2015, 71, 149–159. [Google Scholar] [CrossRef]
- Hong, M.; Zeng, W.; Ma, T.; Lei, G.; Zha, Y.; Fang, Y.; Huang, J. Determination of growth stage-specific crop coefficients (kc) of sunflowers (Helianthus annuus L.) under salt stress. Water 2017, 9, 215. [Google Scholar]
- Lei, T.; Xiao, J.; Li, G.; Mao, J.; Wang, J.; Liu, Z.; Zhang, J. Effect of drip irrigation with saline water on water use efficiency and quality of watermelons. Water Resour. Manag. 2003, 17, 395–408. [Google Scholar]
- Zhang, H.; Xiong, Y.; Huang, G.; Xu, X.; Huang, Q. Effects of water stress on processing tomatoes yield, quality and water use efficiency with plastic mulched drip irrigation in sandy soil of the Hetao Irrigation District. Agric. Water Manag. 2017, 179, 205–214. [Google Scholar] [CrossRef]
- Yang, Y.; Shang, S.; Jiang, L. Remote sensing temporal and spatial patterns of evapotranspiration and the responses to water management in a large irrigation district of North China. Agric. For. Meteorol. 2012, 164, 112–122. [Google Scholar] [CrossRef]
- Bai, L.; Cai, J.; Liu, Y.; Chen, H.; Zhang, B.; Huang, L. Responses of field evapotranspiration to the changes of cropping pattern and groundwater depth in large irrigation district of Yellow River basin. Agric. Water Manag. 2017, 188, 1–11. [Google Scholar] [CrossRef]
- Yue, W.; Yang, J.; Tong, J.; Gao, H. Transfer and balance of water and salt in irrigation district of arid region. J. Hydraul. Eng. 2008, 39, 623–632. (In Chinese) [Google Scholar]
- Barros, R.; Isidoro, D.; Aragüés, R. Long-term water balances in La Violada irrigation district (Spain): I. Sequential assessment and minimization of closing errors. Agric. Water Manag. 2011, 102, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Van der Zee, S.E.A.T.M.; Shah, S.H.H.; Vervoort, R.W. Root zone salinity and sodicity under seasonal rainfall due to feedback of decreasing hydraulic conductivity. Water Resour. Res. 2014, 50, 9432–9446. [Google Scholar] [CrossRef]
- Akae, T.; Nakao, C.; Shi, H.; Zhang, Y. Changes in the cations composition of water from irrigation to drainage and leaching requirement of the Hetao Irrigation District, Inner Mongolia. Trans. JSIDRE 2008, 253, 27–33. [Google Scholar]
- Liu, X.; Wang, L.; Zhang, S.; Zhang, Y. Evaluation of irrigation and drainage water cation composition and salt leaching requirement in Hetao Irrigation District. Chin. J. Eco-Agric. 2011, 19, 500–505. (In Chinese) [Google Scholar] [CrossRef]
Irrigation Event | Year | Date (Month/Day) | Crop | Irrigation Depth (mm) | Year | Date (Month/Day) | Crop | Irrigation Depth (mm) |
---|---|---|---|---|---|---|---|---|
First | 2012 | 05/02–05/07 | Sunflower | 150–206 | 2013 | 05/10–05/14 | Sunflower | 162–223 |
Wheat | 108–149 | Wheat | 64–88 | |||||
Vegetable | 150–206 | Vegetable | 151–208 | |||||
Second | 05/23–05/27 | Wheat | 63–87 | 05/25 | Wheat | 62–86 | ||
Third | 06/22–06/26 | Maize | 94–129 | 06/25–07/01 | Maize | 90–123 | ||
Sunflower | 72–99 | Sunflower | 82–113 | |||||
Wheat | 61–84 | Wheat | 59–81 | |||||
Fourth | 08/02–08/04 | Maize | 91–125 | 07/15–07/19 | Maize | 75–103 | ||
Sunflower | 74–101 | Sunflower | 85–117 | |||||
Fifth | 08/28–09/01 | Maize | 60–83 | 08/06–08/10 | Maize | 86–119 | ||
Sunflower | 72–99 |
Year | Year-Round Evapotranspiration (mm) | Growing Season Evapotranspiration (mm) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ET | ETC | ETN | ETR | ETS | ETW | ET | ETC | ETN | ETR | ETS | ETW | |
2001 | 559 | 638 | 490 | 159 | 143 | 1282 | 444 | 512 | 376 | 150 | 135 | 884 |
2002 | 594 | 685 | 515 | 148 | 134 | 1343 | 461 | 532 | 399 | 126 | 113 | 899 |
2003 | 611 | 712 | 517 | 140 | 126 | 1356 | 452 | 510 | 412 | 126 | 113 | 925 |
2004 | 626 | 739 | 508 | 161 | 145 | 1271 | 477 | 557 | 399 | 147 | 132 | 826 |
2005 | 656 | 777 | 553 | 77 | 69 | 1316 | 437 | 512 | 372 | 72 | 65 | 899 |
2006 | 622 | 748 | 474 | 175 | 158 | 1251 | 466 | 560 | 350 | 162 | 146 | 836 |
2007 | 584 | 684 | 478 | 166 | 149 | 1420 | 433 | 511 | 349 | 123 | 110 | 983 |
2008 | 650 | 744 | 568 | 201 | 181 | 1221 | 498 | 567 | 435 | 182 | 164 | 827 |
2009 | 628 | 766 | 482 | 88 | 79 | 1327 | 485 | 595 | 364 | 78 | 70 | 902 |
2010 | 686 | 807 | 574 | 136 | 123 | 1402 | 508 | 589 | 440 | 131 | 118 | 937 |
2011 | 663 | 796 | 545 | 47 | 42 | 1413 | 418 | 498 | 346 | 40 | 36 | 964 |
2012 | 712 | 815 | 626 | 208 | 187 | 1355 | 499 | 570 | 428 | 203 | 183 | 894 |
2013 | 580 | 676 | 497 | 104 | 94 | 1427 | 438 | 501 | 391 | 103 | 93 | 920 |
Average | 628 | 737 | 525 | 139 | 125 | 1337 | 463 | 539 | 389 | 126 | 114 | 900 |
Year | Year−Round Lateral Groundwater Exchange (mm) | Growing Season Lateral Groundwater Exchange (mm) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
QC | QN | QR | QS | QW | QC | QN | QR | QS | QW | |
2001 | −203 | 323 | 148 | −20 | −1177 | −74 | 195 | 51 | −42 | −1067 |
2002 | −242 | 369 | 181 | −6 | −1105 | −99 | 236 | 56 | −46 | −1027 |
2003 | −182 | 351 | 168 | −25 | −1085 | −73 | 237 | 49 | −53 | −1001 |
2004 | −219 | 351 | 218 | 4 | −1190 | −105 | 214 | 74 | −42 | −1122 |
2005 | −201 | 434 | 192 | −28 | −1061 | −76 | 252 | 71 | −46 | −973 |
2006 | −217 | 310 | 260 | 6 | −1225 | −90 | 160 | 100 | −37 | −1126 |
2007 | −230 | 322 | 274 | 3 | −1046 | −110 | 177 | 86 | −55 | −939 |
2008 | −229 | 363 | 277 | −14 | −1280 | −78 | 212 | 102 | −57 | −1155 |
2009 | −223 | 384 | 295 | 2 | −1061 | −85 | 207 | 77 | −78 | −976 |
2010 | −265 | 438 | 325 | 8 | −1034 | −127 | 249 | 105 | −64 | −994 |
2011 | −243 | 472 | 317 | −3 | −934 | −107 | 275 | 143 | −23 | −877 |
2012 | −195 | 379 | 313 | −43 | −1153 | −61 | 191 | 143 | −48 | −1109 |
2013 | −252 | 397 | 377 | 15 | −977 | −134 | 231 | 131 | −58 | −983 |
Average | −223 | 376 | 257 | −8 | −1102 | −94 | 218 | 91 | −50 | −1027 |
Year | Year-Round | Growing Season | Non-Growing Season | ||||||
---|---|---|---|---|---|---|---|---|---|
Water Application (mm) | Water Storage (mm) | Ratio of Water Storage to Water Application | Water Application (mm) | Water Storage (mm) | Ratio of Water Storage to Water Application | Water Application (mm) | Water Storage (mm) | Ratio of Water Storage to Water Application | |
2001 | 640 | 262 | 0.41 | 439 | 138 | 0.31 | 200 | 123 | 0.62 |
2002 | 706 | 243 | 0.34 | 460 | 109 | 0.24 | 245 | 134 | 0.55 |
2003 | 660 | 263 | 0.40 | 417 | 108 | 0.26 | 244 | 155 | 0.64 |
2004 | 734 | 283 | 0.39 | 489 | 127 | 0.26 | 245 | 156 | 0.64 |
2005 | 691 | 278 | 0.40 | 407 | 105 | 0.26 | 284 | 173 | 0.61 |
2006 | 747 | 253 | 0.34 | 491 | 111 | 0.23 | 256 | 142 | 0.56 |
2007 | 708 | 225 | 0.32 | 444 | 148 | 0.33 | 264 | 77 | 0.29 |
2008 | 749 | 256 | 0.34 | 484 | 110 | 0.23 | 265 | 146 | 0.55 |
2009 | 725 | 233 | 0.32 | 451 | 107 | 0.24 | 274 | 126 | 0.46 |
2010 | 805 | 242 | 0.30 | 506 | 124 | 0.25 | 300 | 118 | 0.39 |
2011 | 738 | 271 | 0.37 | 422 | 138 | 0.33 | 316 | 133 | 0.42 |
2012 | 754 | 274 | 0.36 | 485 | 135 | 0.28 | 269 | 138 | 0.51 |
2013 | 697 | 291 | 0.42 | 442 | 148 | 0.33 | 255 | 144 | 0.56 |
Average | 720 | 260 | 0.36 | 457 | 124 | 0.27 | 263 | 136 | 0.52 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, D.; Xu, X.; Huang, Q.; Huo, Z.; Xiong, Y.; Huang, G. Analyzing the Role of Shallow Groundwater Systems in the Water Use of Different Land-Use Types in Arid Irrigated Regions. Water 2018, 10, 634. https://doi.org/10.3390/w10050634
Ren D, Xu X, Huang Q, Huo Z, Xiong Y, Huang G. Analyzing the Role of Shallow Groundwater Systems in the Water Use of Different Land-Use Types in Arid Irrigated Regions. Water. 2018; 10(5):634. https://doi.org/10.3390/w10050634
Chicago/Turabian StyleRen, Dongyang, Xu Xu, Quanzhong Huang, Zailin Huo, Yunwu Xiong, and Guanhua Huang. 2018. "Analyzing the Role of Shallow Groundwater Systems in the Water Use of Different Land-Use Types in Arid Irrigated Regions" Water 10, no. 5: 634. https://doi.org/10.3390/w10050634
APA StyleRen, D., Xu, X., Huang, Q., Huo, Z., Xiong, Y., & Huang, G. (2018). Analyzing the Role of Shallow Groundwater Systems in the Water Use of Different Land-Use Types in Arid Irrigated Regions. Water, 10(5), 634. https://doi.org/10.3390/w10050634