Quantitative Assessment of Flow Regime Alteration Using a Revised Range of Variability Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. First-Order Connectivity Index
2.2. Tanimoto Similarity
2.3. Revised RVA Method
2.4. Ecological Limits of Hydrologic Alteration (ELOHA)
3. Case Study
4. Results and Discussion
4.1. Comparing the Results of the Traditional and Revised RVA Methods
4.2. Sensitivity of IA and TA
4.3. Application of the Revised Method to the ELOHA Framework
4.4. Model Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bunn, S.E.; Arthington, A.H. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manag. 2002, 30, 492–507. [Google Scholar] [CrossRef]
- Li, D.N.; Long, D.; Zhao, J.; Lu, H.; Hong, Y. Observed changes in flow regimes in the Mekong River Basin. J. Hydrol. 2017, 551, 217–232. [Google Scholar] [CrossRef]
- Poff, L.R.; Matthews, J.H. Environmental flows in the anthropocence: Past progress and future prospects. Curr. Opin. Environ. Sustain. 2013, 5, 667–675. [Google Scholar] [CrossRef]
- Arthington, A.H. Environmental flows: A scientific resource and policy framework for river conservation and restoration. Aquat. Conserv. 2015, 25, 155–161. [Google Scholar] [CrossRef]
- Arthington, A.H.; Naiman, R.J.; Mcclain, M.E.; Nilsson, C. Preserving the biodiversity and ecological services of rivers: New challenges and research opportunities. Freshw. Biol. 2010, 55, 1–16. [Google Scholar] [CrossRef]
- Arthington, A.H. Environmental flows: Ecological limits of hydrologic alteration (ELOHA). In The Wetland Book; Finlayson, C.M., Everard, M., Irvine, K., McInnes, R.J., Middleton, B.A., van Dam, A.A., Davidson, N.C., Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 1–5. [Google Scholar]
- Buchanan, C.; Moltz, H.L.N.; Haywood, H.C.; Palmer, J.B.; Griggs, A.N. A test of the ecological limits of hydrologic alteration (ELOHA) method for determining environmental flows in the Potomac River basin, U.S.A. Freshw. Biol. 2013, 58, 2632–2647. [Google Scholar] [CrossRef]
- Solans, M.A.; de Jalón, G.D. Basic tools for setting environmental flows at the regional scale: Application of the ELOHA framework in a Mediterranean river basin. Ecohydrology 2016, 9, 1517–1538. [Google Scholar] [CrossRef]
- Yang, Z.; Yan, Y.; Liu, Q. Assessment of the flow regime alterations in the lower Yellow River, China. Ecol. Inform. 2012, 10, 56–64. [Google Scholar] [CrossRef]
- Botter, G.; Basso, S.; Porporato, A.; Rodriguez-Iturbe, I.; Rinaldo, A. Natural streamflow regime alterations: Damming of the Piave river basin (Italy). Water Resour. Res. 2010, 46, 1896–1911. [Google Scholar] [CrossRef]
- Tang, J.; Yin, X.A.; Yang, P.; Yang, Z.F. Climate-induced flow regime alterations and their implications for the Lancang River, China. River Res. Appl. 2015, 31, 422–432. [Google Scholar] [CrossRef]
- Yang, T.; Cui, T.; Xu, C.Y.; Ciais, P.; Shi, P. Development of a new IHA method for impact assessment of climate change on flow regime. Glob. Planet. Chang. 2017, 156, 68–79. [Google Scholar] [CrossRef]
- Mittal, N.; Bhave, A.G.; Mishra, A.; Singh, R. Impact of human intervention and climate change on natural flow regime. Water Res. Manag. 2016, 30, 685–699. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Yang, Z.; Yin, X.A.; Liu, Q. A framework for assessing flow regime alterations resulting from the effects of climate change and human disturbance. Hydrol. Sci. J. 2018, 63, 1–16. [Google Scholar] [CrossRef]
- Xue, L.; Zhang, H.; Yang, C.; Zhang, L.; Sun, C. Quantitative assessment of hydrological alteration caused by irrigation projects in the Tarim River basin, China. Sci. Rep. 2017, 7, 4291. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.S.; Kim, B.K.; Kwon, H.H. Assessment of the impact of climate change on the flow regime of the Han river basin using indicators of hydrologic alteration. Hydrol. Processes 2015, 25, 691–704. [Google Scholar] [CrossRef]
- Olden, J.D.; Poff, N.L. Redundancy and the choice of hydrologic indices for characterizing streamflow regimes. River Res. Appl. 2010, 19, 101–121. [Google Scholar] [CrossRef]
- Stanford, J.A.; Ward, J.V.; Liss, W.J.; Frissell, C.A.; Williams, R.N.; Lichatowich, J.A.; Richter, B.D.; Baumgartner, J.V.; Powell, J.; Braun, D.P. A method for assessing hydrologic alteration within ecosystems. Conserv. Biol. 1996, 10, 1163–1174. [Google Scholar]
- Richter, B.; Baumgartner, J.; Wigington, R.; Braun, D. How much water does a river need? Freshw. Biol. 1997, 37, 231–249. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiao, M.; Liu, C.L.; Singh, V.P. Reservoir-induced hydrological alterations and environmental flow variation in the East River, the Pearl River basin, China. Stoch. Environ. Res. Risk Assess. 2014, 28, 2119–2131. [Google Scholar] [CrossRef]
- Galat, D.L.; Lipkin, R. Restoring ecological integrity of great rivers: Historical hydrographs aid in defining reference conditions for the Missouri River. In Assessing the Ecological Integrity of Running Waters; Springer: Dordrecht, The Netherlands, 2000; pp. 29–48. [Google Scholar]
- Shen, C.; Dong, L.H.; Wang, Y.C.; Feng, S.X.; Wang, Y. Trend analysis on the flow alteration in the nature reserve, upstream of Yangtze river. Appl. Mech. Mater. 2014, 641, 132–136. [Google Scholar] [CrossRef]
- Mathews, R.; Richter, B.D. Application of the indicators of hydrologic alteration software in environmental flow setting. J. Am. Water Res. Assoc. 2007, 43, 1400–1413. [Google Scholar] [CrossRef]
- Shiau, J.T.; Wu, F.C. A histogram matching approach for assessment of flow regime alteration: Application to environmental flow optimization. River Res. Appl. 2008, 24, 914–928. [Google Scholar] [CrossRef]
- Belmar, O.; Bruno, D.; Martínez-Capel, F.; Barquín, J.; Josefa Velasco, J. Effects of flow regime alteration on fluvial habitats and riparian quality in a semiarid Mediterranean basin. Ecol. Indic. 2013, 30, 52–64. [Google Scholar] [CrossRef]
- Richter, B.D.; Baumgartner, J.V.; Braun, D.P.; Powell, J. A spatial assessment of hydrologic alteration within a river network. River Res. Appl. 1998, 14, 329–340. [Google Scholar] [CrossRef]
- Richter, B.D.; Warner, A.T.; Meyer, J.L.; Lutz, K. A collaborative and adaptive process for developing environmental flow recommendations. River Res. Appl. 2006, 22, 297–318. [Google Scholar] [CrossRef]
- Lytle, D.A.; Merritt, D.M. Hydrologic regimes and riparian forests: A structured population model for cottonwood. Ecology 2004, 85, 2493–2503. [Google Scholar] [CrossRef]
- Shiau, J.T.; Wu, F.C. Pareto-optimal solutions for environmental flow schemes incorporating the intra-annual and interannual variability of the natural flow regime. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Yin, X.A.; Yang, Z.F.; Petts, G.E. A new method to assess the flow regime alterations in riverine ecosystems. River Res. Appl. 2015, 31, 497–504. [Google Scholar] [CrossRef]
- Yu, C.; Yin, X.; Yang, Z. A revised range of variability approach for the comprehensive assessment of the alteration of flow regime. Ecol. Eng. 2016, 96, 200–207. [Google Scholar] [CrossRef]
- Caporossi, G.; Gutman, I.; Hansen, P.; Pavlović, L. Graphs with maximum connectivity index. Comput. Biol. Chem. 2003, 27, 85–90. [Google Scholar] [CrossRef]
- Randić, M. The connectivity index 25 years after. J. Mol. Graph. Model. 2001, 20, 19–35. [Google Scholar] [CrossRef]
- Kryszkiewicz, M. Bounds on lengths of real valued vectors similar with regard to the Tanimoto similarity. In Proceedings of the Asian Conference on Intelligent Information and Database Systems, Kuala Lumpur, Malaysia, 18–20 March 2013; pp. 445–454. [Google Scholar]
- Zhang, B.; Vogt, M.; Maggiora, G.M.; Bajorath, J. Design of chemical space networks using a Tanimoto similarity variant based upon maximum common substructures. J. Comput-Aided Mol. Des. 2015, 29, 937–950. [Google Scholar] [CrossRef] [PubMed]
- Goldin, D.Q.; Millstein, T.D.; Kutlu, A. Bounded similarity querying for time-series data. Inf. Comput. 2004, 194, 203–241. [Google Scholar] [CrossRef]
- Keogh, E. Efficiently finding arbitrarily scaled patterns in massive time series databases. In Proceedings of the European Conference on Principles of Data Mining and Knowledge Discovery, Cavtat-Dubrovnik, Croatia, 22–26 September 2003; pp. 253–265. [Google Scholar]
- Lee, S.; Kwon, D.; Lee, S. Minimum distance queries for time series data. J. Syst. Softw. 2004, 69, 105–113. [Google Scholar] [CrossRef]
- Tuna, S.; Niranjan, M. Classification with binary gene expressions. J. Biomed. Sci. Eng. 2009, 2, 390–399. [Google Scholar] [CrossRef]
- Fligner, M.A.; Verducci, J.S.; Blower, P.E. A modification of the Jaccard–Tanimoto similarity index for diverse selection of chemical compounds using binary strings. Technometrics 2002, 44, 110–119. [Google Scholar] [CrossRef]
- McManamay, R.A.; Orth, D.J.; Dolloff, C.A.; Mathews, D.C. Application of the ELOHA framework to regulated rivers in the Upper Tennessee River Basin: A case study. Environ. Manag. 2013, 51, 1210–1235. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Lan, H.; Liu, Y.; Zhou, Y. Characteristics of spatial distribution of debris flow and the effect of their sediment yield in main downstream of Jinsha River, China. Environ. Earth Sci. 2009, 64, 1653–1666. [Google Scholar] [CrossRef]
- Lee, A.; Cho, S.; Kang, D.K.; Kim, S. Analysis of the effect of climate change on the Nakdong River stream flow using indicators of hydrological alteration. J. Hydro-Environ. Res. 2014, 8, 234–247. [Google Scholar] [CrossRef]
- Rolls, R.J.; Arthington, A. How do low magnitudes of hydrologic alteration impact riverine fish populations and assemblage characteristics? Ecol. Indic. 2014, 39, 179–188. [Google Scholar] [CrossRef]
- Rahman, M.A.T.M.T.; Hoque, S.; Saadat, A.H.M. Selection of minimum indicators of hydrologic alteration of the Gorai River, Bangladesh using principal component analysis. Sustain. Water Res. Manag. 2017, 3, 13–23. [Google Scholar] [CrossRef]
- Yu, C.; Yin, X.; Yang, Z.; Dang, Z. Assessment of the degree of hydrological indicators alteration under climate change. In Proceedings of the 6th International Conference on Energy and Environmental Protection, Zhuhai, China, 29–30 June 2017; pp. 13–20. [Google Scholar]
- Jowett, I.G.; Richardson, J.; Bonnett, M.L. Relationship between flow regime and fish abundances in a gravel-bed river, New Zealand. J. Fish Biol. 2005, 66, 1419–1436. [Google Scholar] [CrossRef]
- Marcinkowski, P.; Grygoruk, M. Long-term downstream effects of a dam on a lowland river flow regime: Case study of the Upper Narew. Water 2017, 9, 783. [Google Scholar] [CrossRef]
- Seyam, M.; Othman, F. Long-term variation analysis of a tropical river’s annual streamflow regime over a 50-year period. Theor. Appl. Climatol. 2015, 121, 71–85. [Google Scholar] [CrossRef]
- Belmar, O.; Velasco, J.; Gutiérrez-Cánovas, C.; Millán, A.; Wood, P.J. The influence of natural flow regimes on macroinvertebrate assemblages in a semiarid Mediterranean basin. Ecohydrology 2012, 6, 363–379. [Google Scholar] [CrossRef] [Green Version]
- You, J.Y.; Thum, B.H.; Lin, F.H. The examination of reproducibility in hydro-ecological characteristics by daily synthetic flow models. J. Hydrol. 2014, 511, 904–919. [Google Scholar] [CrossRef]
- Johnson, W.C. Riparian vegetation diversity along regulated rivers: Contribution of novel and relict habitat. Freshw. Biol. 2002, 47, 749–759. [Google Scholar] [CrossRef]
- Nilsson, C.; Berggren, K. Alterations of riparian ecosystems caused by river regulation: Dam operations have caused global-scale ecological changes in riparian ecosystems. How to protect river environments and human needs of rivers remains one of the most important questions of our time. BioScience 2000, 50, 783–792. [Google Scholar]
- Doyle, M.W.; Stanley, E.H.; Strayer, D.L.; Jacobson, R.B.; Schmidt, J.C. Effective discharge analysis of ecological processes in streams. Water Resour Res. 2005, 41. [Google Scholar] [CrossRef]
- Timpe, K.; Kaplan, D. The changing hydrology of a dammed Amazon. Sci. Adv. 2017, 3, e1700611. [Google Scholar] [CrossRef] [PubMed]
- Ardron, J.A. Three initial OSPAR tests of ecological coherence: Heuristics in a data-limited situation. Ices J. Mar. Sci. 2008, 65, 1527–1533. [Google Scholar] [CrossRef]
- Macnaughton, C.J.; Mclaughlin, F.; Bourque, G.; Senay, C.; Lanthier, G. The effects of regional hydrologic alteration on fish community structure in regulated rivers. River Res. Appl. 2017, 33, 249–257. [Google Scholar] [CrossRef]
- Williams, J.G. Building hydrologic foundations for applications of ELOHA: How long a record should you have? River Res. Appl. 2018, 34, 93–98. [Google Scholar] [CrossRef]
IHA Statistical Group | Ecosystem Influences | Hydrologic Parameters |
---|---|---|
Group 1: Magnitude of monthly water conditions | Availability of aquatic habitat | Mean flow for each calendar month |
Group 2: Magnitude and duration of annual extreme flow | Distribution of plant communities in lakes, ponds, and floodplains | Annual minimum 1-day, 3-day, 7-day, 30-day, and 90-day means |
Annual maximum 1-day, 3-day, 7-day, 30-day, and 90-day means | ||
Group 3: Timing of annual extreme water conditions | Spawning cues for migratory fish | Date of annual 1-day maximum flow |
Date of annual 1-day minimum flow | ||
Group 4: Frequency and duration of high and low pulses | Water bird feeding, resting, and breeding | Number of high pulses in each year |
Number of low pulses in each year | ||
Mean duration of the annual high pulse | ||
Mean duration of the annual low pulse | ||
Group 5: Rate and frequency of water condition changes | Drought stress on plants | Rise rates: Mean or median of all positive differences between consecutive daily values |
Fall rates: Mean or median of all negative differences between consecutive daily values | ||
Number of rises | ||
Number of falls |
Pre-Impact Series | Post-Impact Series | ||||||
---|---|---|---|---|---|---|---|
Year | L1 | L2 | L3 | Year | L1 | L2 | L3 |
1971 | 10 | 17 | 5 | 1993 | 9 | 12 | 11 |
1972 | 16 | 12 | 5 | 1994 | 18 | 7 | 6 |
1973 | 14 | 15 | 3 | 1995 | 14 | 17 | 2 |
1974 | 18 | 4 | 11 | 1996 | 6 | 19 | 7 |
1975 | 3 | 18 | 10 | 1997 | 7 | 19 | 6 |
1976 | 8 | 22 | 2 | 1998 | 8 | 10 | 14 |
1977 | 15 | 16 | 2 | 1999 | 7 | 9 | 15 |
1978 | 10 | 18 | 4 | 2000 | 6 | 6 | 19 |
1979 | 13 | 18 | 1 | 2001 | 4 | 18 | 10 |
1980 | 7 | 12 | 13 | 2002 | 4 | 21 | 7 |
1981 | 3 | 13 | 15 | 2003 | 8 | 13 | 11 |
1982 | 8 | 17 | 7 | 2004 | 6 | 16 | 10 |
1983 | 10 | 16 | 6 | 2005 | 6 | 7 | 18 |
1984 | 19 | 10 | 4 | 2006 | 15 | 5 | 11 |
1985 | 8 | 18 | 7 | 2007 | 13 | 14 | 6 |
1986 | 11 | 16 | 5 | 2008 | 6 | 18 | 8 |
1987 | 16 | 7 | 10 | 2009 | 5 | 14 | 13 |
1988 | 7 | 12 | 12 | 2010 | 4 | 21 | 7 |
1989 | 7 | 16 | 9 | 2011 | 7 | 22 | 3 |
1990 | 5 | 11 | 15 | 2012 | 15 | 4 | 14 |
1991 | 5 | 10 | 16 | 2013 | 7 | 21 | 4 |
1992 | 14 | 6 | 11 | 2014 | 8 | 14 | 10 |
IA | 33% | ||||||
TA | 25% | ||||||
OA | 50% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, J.; Peng, W.; Huang, W.; Qu, X.; Singh, S.K. Quantitative Assessment of Flow Regime Alteration Using a Revised Range of Variability Methods. Water 2018, 10, 597. https://doi.org/10.3390/w10050597
Ge J, Peng W, Huang W, Qu X, Singh SK. Quantitative Assessment of Flow Regime Alteration Using a Revised Range of Variability Methods. Water. 2018; 10(5):597. https://doi.org/10.3390/w10050597
Chicago/Turabian StyleGe, Jinjin, Wenqi Peng, Wei Huang, Xiaodong Qu, and Shailesh Kumar Singh. 2018. "Quantitative Assessment of Flow Regime Alteration Using a Revised Range of Variability Methods" Water 10, no. 5: 597. https://doi.org/10.3390/w10050597
APA StyleGe, J., Peng, W., Huang, W., Qu, X., & Singh, S. K. (2018). Quantitative Assessment of Flow Regime Alteration Using a Revised Range of Variability Methods. Water, 10(5), 597. https://doi.org/10.3390/w10050597