Assessment of a Field Tidal Flow Constructed Wetland in Treatment of Swine Wastewater: Life Cycle Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Target Process
2.2. Goal and Scope Definition
2.3. Life Cycle Inventory
2.3.1. Input
2.3.2. Emissions
2.4. Life Cycle Impact Assessment
2.5. Sensitivity Analysis
3. Results and Discussion
3.1. Interpretation of the LCA Results
3.2. AP, SO2, and NOx Emission
3.3. EP
3.4. CO2 Emission and GWP
3.5. Sensitivity Analysis
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Agriculture and Food Development Authority Agriculture in Ireland. Available online: https://www.teagasc.ie/rural-economy/rural-economy/agri-food-business/agriculture-in-ireland/ (accessed on 2 April 2018).
- Journal Engineers Green farming: Making the Pig Industry a Nexus of Waste Management and Renewable Energy. Available online: http://www.engineersjournal.ie/2016/07/12/green-farm-pig-renewable-energy/ (accessed on 2 April 2018).
- Portal, E.D. Nitrate Vulnerable Zones. Available online: https://www.europeandataportal.eu/data/en/dataset/nitrate-vulnerable-zones (accessed on 2 April 2018).
- Kadlec, R.H.; Wallace, S.D. Treatment Wetlands, 2nd ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2009; ISBN 978-1-56570-526-4. [Google Scholar]
- Hu, Y.; Zhao, Y.; Rymszewicz, A. Robust biological nitrogen removal by creating multiple tides in a single bed tidal flow constructed wetland. Sci. Total Environ. 2014, 470–471, 1197–1204. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhao, X.; Zhao, Y. Achieving high-rate autotrophic nitrogen removal via Canon process in a modified single bed tidal flow constructed wetland. Chem. Eng. J. 2014, 237, 329–335. [Google Scholar] [CrossRef]
- Zang, Y.; Li, Y.; Wang, C.; Zhang, W.; Xiong, W. Towards more accurate life cycle assessment of biological wastewater treatment plants: A review. J. Clean. Prod. 2015, 107, 676–692. [Google Scholar] [CrossRef]
- Corominas, L.; Foley, J.; Guest, J.S.; Hospido, A.; Larsen, H.F.; Morera, S.; Shaw, A. Life cycle assessment applied to wastewater treatment: State of the art. Water Res. 2013, 47, 5480–5492. [Google Scholar] [CrossRef] [PubMed]
- Kalbar, P.P.; Karmakar, S.; Asolekar, S.R. Assessment of wastewater treatment technologies: Life cycle approach. Water Environ. J. 2013, 27, 261–268. [Google Scholar] [CrossRef]
- Zhao, Y.Q.; Babatunde, A.O.; Hu, Y.S.; Kumar, J.L.G.; Zhao, X.H. Pilot field-scale demonstration of a novel alum sludge-based constructed wetland system for enhanced wastewater treatment. Process Biochem. 2011, 46, 278–283. [Google Scholar] [CrossRef]
- Remy, C.; Boulestreau, M.; Warneke, J.; Jossa, P.; Kabbe, C.; Lesjean, B. Evaluating new processes and concepts for energy and resource recovery from municipal wastewater with life cycle assessment. Water Sci. Technol. 2015, 73, 1074–1080. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhao, Y.Q.; Babatunde, A.O.; Wang, L.; Ren, Y.X.; Han, Y. Characteristics and mechanisms of phosphate adsorption on dewatered alum sludge. Sep. Purif. Technol. 2006, 51, 193–200. [Google Scholar] [CrossRef]
- Bai, S.; Wang, X.; Huppes, G.; Zhao, X.; Ren, N. Using site-specific life cycle assessment methodology to evaluate Chinese wastewater treatment scenarios: A comparative study of site-generic and site-specific methods. J. Clean. Prod. 2017, 144, 1–7. [Google Scholar] [CrossRef]
- Sustainable Energy Authority of Ireland. Energy in Ireland 1990–2015. Available online: http://www.seai.ie/resources/publications/Energy-in-Ireland-1990-2015.pdf (accessed on 3 April 2018).
- Mander, Ü.; Maddison, M.; Soosaar, K.; Karabelnik, K. The impact of pulsing hydrology and fluctuating water table on greenhouse gas emissions from constructed wetlands. Wetlands 2011, 31, 1023–1032. [Google Scholar] [CrossRef]
- De Klein, J.J.M.; Van der Werf, A.K. Balancing carbon sequestration and GHG emissions in a constructed wetland. Ecol. Eng. 2014, 66, 36–42. [Google Scholar] [CrossRef]
- Bai, S.; Wang, X.; Zhang, X.; Zhao, X.; Ren, N. Life cycle assessment in wastewater treatment: Influence of site-oriented normalization factors, life cycle impact assessment methods, and weighting methods. RSC Adv. 2017, 7, 26335–26341. [Google Scholar] [CrossRef]
- Garfí, M.; Flores, L.; Ferrer, I. Life Cycle Assessment of wastewater treatment systems for small communities: Activated sludge, constructed wetlands and high rate algal ponds. J. Clean. Prod. 2017, 161, 211–219. [Google Scholar] [CrossRef]
- Corbala-robles, L. Life cycle assessment of biological pig manure treatment versus direct land application—A trade-off story. Resour. Conserv. Recycl. 2018, 131, 86–98. [Google Scholar] [CrossRef]
Wastewater (mg/L) | |||||
Composition | Influent | Effluent | Composition | Influent | Effluent |
BOD | 318 | 102 | PO43−-P | 20 | 1.5 |
COD | 446 | 206 | SS | 188 | 68 |
TN | 136 | 72 | Al | 0.01 | 0.07 |
CW (Each Stage) | |||||
Volume-total | 1100 L | DAS | 972 kg (75% moisture) | ||
Volume-working | 180 L | Gravel-mass | 305 kg | ||
Cycle | 3 cycles/day | Cycle time | 8 h |
Item | Unit | Value | Item | Unit | Value |
---|---|---|---|---|---|
COD | g | 446 | Containers | kg | 0.055 |
TN | g | 136 | Tran-container | t·km | 0.0055 |
TP | g | 20 | Gravel | kg | 2.36 |
Electricity | kWh | 2.36 | Tran-gravel | t·km | 0.047 |
Pumps | - | 0.00186 | DAS | kg | 7.55 |
Tran-pump | t·km | 2.62 | Tran-alum | t·km | 0.151 |
Vegetation | m2 | 0.011 | - | - | - |
Process | AP (kg SO2 eq) | FDP (kg Coal-R eq) | CO2 (kg) | EP (kg PO43− eq) | GWP (kg CO2 eq) | NOx (kg) | SO2 (kg) |
---|---|---|---|---|---|---|---|
Electricity | 1.08 × 10−2 | 5.93 | 1.99 | 5.65 × 10−4 | 2.05 | 3.73 × 10−3 | 7.92 × 10−3 |
Gravel | 1.33 × 10−4 | 4.80 × 10−2 | 1.07 × 10−2 | 1.80 × 10−5 | 1.14 × 10−2 | 1.33 × 10−4 | 3.90 × 10−5 |
Containers | 5.24 × 10−4 | 1.18 | 1.26 × 10−1 | 4.77 × 10−5 | 1.47 × 10−1 | 2.71 × 10−4 | 3.16 × 10−4 |
Pumps | 8.50 × 10−4 | 5.61 × 10−1 | 1.60 × 10−1 | 2.92 × 10−3 | 1.74 × 10−1 | 5.66 × 10−4 | 4.76 × 10−4 |
DAS | 2.24 × 10−4 | 6.35 × 10−2 | 9.95 × 10−3 | 1.01 × 10−4 | 1.10 × 10−2 | 1.10 × 10−2 | 1.23 × 10−5 |
CW | 0 | 0 | 0 | 0.006715 | 0.22495 | 0 | 0 |
Vegetation | 0 | 0 | −0.0363 | 0 | −0.0363 | 0 | 0 |
Process | AP-CN-2010 | FDP (Fossil Fuel)-CN-2010 | CO2-CN-2010 | EP-CN-2010 | GWP-CN-2010 | NOx-CN-2010 | SO2-CN-2010 |
---|---|---|---|---|---|---|---|
Electricity | 2.97 × 10−13 | 3.83 × 10−13 | 2.40 × 10−13 | 1.50 × 10−13 | 1.95 × 10−13 | 1.79 × 10−13 | 3.63 × 10−13 |
Gravel | 3.66 × 10−15 | 3.10 × 10−15 | 1.29 × 10−15 | 4.78 × 10−15 | 1.09 × 10−15 | 6.41 × 10−15 | 1.78 × 10−15 |
Containers | 1.44 × 10−14 | 7.60 × 10−14 | 1.52 × 10−14 | 1.27 × 10−14 | 1.40 × 10−14 | 1.30 × 10−14 | 1.45 × 10−14 |
Pumps | 2.33 × 10−14 | 3.63 × 10−14 | 1.93 × 10−14 | 7.77 × 10−13 | 1.65 × 10−14 | 2.72 × 10−14 | 2.18 × 10−14 |
DAS | 6.16 × 10−15 | 4.11 × 10−15 | 1.20 × 10−15 | 2.68 × 10−14 | 1.04 × 10−15 | 1.45 × 10−14 | 5.64 × 10−16 |
CW | 0 | 0 | 0 | 1.79 × 10−12 | 2.13 × 10−14 | 0 | 0 |
Vegetation | 0 | 0 | −4.37 × 10−15 | 0 | −3.45 × 10−15 | 0 | 0 |
Variable (±10%) | Sensitivity % | ||||||
---|---|---|---|---|---|---|---|
AP | FDP | CO2 | EP | GWP | NOx | SO2 | |
DAS | 0.018 | 0.008 | 0.004 | 0.009 | 0.004 | 0.060 | 0.001 |
Electricity | 0.862 | 0.762 | 0.853 | 0.054 | 0.772 | 0.745 | 0.903 |
Vegetation | 0 | 0 | 0.016 | 0 | 0.014 | 0 | 0 |
HDPE | 0.042 | 0.151 | 0.054 | 0.004 | 0.055 | 0.054 | 0.036 |
Pump | 0.068 | 0.072 | 0.068 | 0.28 | 0.065 | 0.113 | 0.054 |
Gravel | 0.010 | 0.006 | 0.004 | 0.001 | 0.004 | 0.027 | 0.004 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Liu, R.; O’Meara, K.; Mullan, E.; Zhao, Y. Assessment of a Field Tidal Flow Constructed Wetland in Treatment of Swine Wastewater: Life Cycle Approach. Water 2018, 10, 573. https://doi.org/10.3390/w10050573
Wang T, Liu R, O’Meara K, Mullan E, Zhao Y. Assessment of a Field Tidal Flow Constructed Wetland in Treatment of Swine Wastewater: Life Cycle Approach. Water. 2018; 10(5):573. https://doi.org/10.3390/w10050573
Chicago/Turabian StyleWang, Tong, Ranbin Liu, Kate O’Meara, Emmet Mullan, and Yaqian Zhao. 2018. "Assessment of a Field Tidal Flow Constructed Wetland in Treatment of Swine Wastewater: Life Cycle Approach" Water 10, no. 5: 573. https://doi.org/10.3390/w10050573
APA StyleWang, T., Liu, R., O’Meara, K., Mullan, E., & Zhao, Y. (2018). Assessment of a Field Tidal Flow Constructed Wetland in Treatment of Swine Wastewater: Life Cycle Approach. Water, 10(5), 573. https://doi.org/10.3390/w10050573